Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In sub-Saharan Africa, Kaposi's sarcoma-associated herpesvirus (KSHV) is endemic, and Kaposi's sarcoma (KS) is a significant public health problem. Until recently, KSHV genotype analysis was performed using variable gene regions, representing a small fraction of the genome, and thus the contribution of sequence variation to viral transmission or pathogenesis are understudied. We performed near full-length KSHV genome sequence analysis on samples from 43 individuals selected from a large Cameroonian KS case-control study. KSHV genomes were obtained from 21 KS patients and 22 control participants. Phylogenetic analysis of the K1 region indicated the majority of sequences were A5 or B1 subtypes and all three K15 alleles were represented. Unique polymorphisms in the KSHV genome were observed including large gene deletions. We found evidence of multiple distinct KSHV genotypes in three individuals. Additionally, our analyses indicate that recombination is prevalent suggesting that multiple KSHV infections may not be uncommon overall. Most importantly, a detailed analysis of KSHV genomes from KS patients and control participants did not find a correlation between viral sequence variations and disease. Our study is the first to systematically compare near full-length KSHV genome sequences between KS cases and controls in the same endemic region to identify possible sequence variations associated with disease risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043945PMC
http://dx.doi.org/10.1002/ijc.34136DOI Listing

Publication Analysis

Top Keywords

kshv genome
12
kshv
9
kaposi's sarcoma
8
case-control study
8
viral sequence
8
sequence variation
8
full-length kshv
8
kshv genomes
8
genomes patients
8
patients control
8

Similar Publications

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the Gammaherpesvirinae subfamily. During the lytic phase of herpesviruses, viral capsids form in the host cell nucleus, and the replicated viral genome is packaged into these capsids. The herpesviral genome is replicated as a precursor head-to-tail concatemer consisting of tandemly repeated genomic units, each flanked by terminal repeats (TRs).

View Article and Find Full Text PDF

Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong oncogenic infection in lymphatic endothelial cells (LECs) by ensuring episomal maintenance of its genome via the viral protein LANA. Efficient viral genome maintenance typically involves host DNA replication and episome tethering, but the extent of cell-type-specific regulation remains unclear. Here, we identify that KSHV hijacks the pioneering function of the endothelial-specific transcription factor SOX18 to facilitate persistence of viral episomes.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus implicated in multiple human malignancies, can undergo lytic replication during primary infection, a process that contributes to viral dissemination, immune evasion, and disease pathogenesis. However, the lack of robust in vitro systems for de novo lytic infection has limited insights into early infection events. Here, we present a tractable protocol that employs human colorectal cancer HCT 116 cells as targets for infection with cell-free virions derived from KSHV bacterial artificial chromosome 16 (BAC16)-reactivated iSLK producer cells.

View Article and Find Full Text PDF

Viruses use a range of sophisticated strategies to evade detection by cytotoxic T-lymphocytes (CTLs) within host cells. Beyond elaborating dedicated viral proteins that disrupt the MHC class I antigen-presentation machinery, some viruses possess intrinsic, cis-acting genome-encoded elements that interfere with antigen processing and display. These protein features, including G-quadruplex motifs, repetitive peptide sequences, and rare-codon usage, counterintuitively limit production of proteins critical to virus survival, particularly during latency.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a common herpesvirus that establishes lifetime infections in most people worldwide. To protect the lytically replicating EBV genomes from mutation, the EBV BORF2 protein relocalizes the APOBEC3B cytosine deaminase out of the nucleus, sequestering it in cytoplasmic bodies. This property is conserved in BORF2 homologs in other herpesviruses, including Kaposi's sarcoma-associated herpesvirus ORF61 and herpes simplex virus 1 UL39.

View Article and Find Full Text PDF