Mildly Peeling Off and Encapsulating Large MXene Nanosheets with Rigid Biologic Fibrils for Synchronization of Solar Evaporation and Energy Harvest.

ACS Nano

Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient and nondestructive liquid exfoliation of MXene with large lateral size has drawn growing research interest due to its outstanding properties and diverse potential applications. The conventional sonication method, though enabling a high production yield of MXene nanosheets, broke them down into submicrometric sizes or even quantum dots, and thus sacrificed their size-dependent properties, chemical stability, and wide applications. Herein, rigid biological nanofibrils in combination of mild manual shake were found to be capable of peeling off MXene nanosheets by attaching on MXene surfaces and localizing the shear force. With comparison to sonication, this efficient and nondestructive exfoliation approach produced the MXene nanosheets with the lateral size up to 4-6 μm and a comparable yield of 64% within 2 h. The resultant MXene nanosheets were encapsulated with these biological fibrils, and thus enabled super colloidal and chemical stability. A steam generation efficiency of ∼86% and a high evaporation rate of 3.3 kg m h were achieved on their aerogels under 1-Sun irradiation at ∼25 °C. An evaporation rate of 0.5 kg m h still maintained even at the atmospheric temperature of -5 °C. More importantly, an electricity generation up to ∼350 mV also accompanied this solar evaporation under equivalent 5-Sun irradiation. Thus, this fibrous strategy not only provides an efficient and nondestructive exfoliation method of MXene, but also promises synchronization of solar-thermal evaporation and energy harvest.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c10836DOI Listing

Publication Analysis

Top Keywords

mxene nanosheets
20
efficient nondestructive
12
mxene
8
solar evaporation
8
evaporation energy
8
energy harvest
8
lateral size
8
chemical stability
8
nondestructive exfoliation
8
evaporation rate
8

Similar Publications

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

An injectable hyaluronic acid-based hydrogel for the treatment of breast cancer.

Colloids Surf B Biointerfaces

September 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation

In this study, we develop a hyaluronic-tannic acid (HA-TA) hydrogel loaded with Cu nanoparticles attach to MXene (MXene@Cu) to explore its potential as a targeted breast cancer treatment. The MXene@Cu nanosheets exhibit activity in depleting glutathione (GSH) and inducing reactive oxygen species (ROS) through the Fenton-like reaction. They can down-regulate the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of lipid peroxides (LPO) and inducing ferroptosis in tumor cells.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF