Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Designing and developing novel hybrid materials for the effective photoconversion of organic substrates is of great importance. Crystalline hybrid heterostructures, as an attractive class of material, are composed of semiconducting organic and inorganic components with fast-responsive charge-separated properties and thus they are promising photocatalysts. Naphthalene diimides (NDIs) and decatungstate (WO) are two versatile semiconductor components that have been utilized as building blocks for the construction of functional materials for various applications. In this context, we demonstrated that the combination of an electron-deficient NDI derivative with WO resulted in an organic-inorganic hybrid compound, namely Zn(DPNDI)(WO)(DMA) (DPNDI = ,'-di-(4-pyridyl)-1,4,5,8-naphthalene diimide) (1). Because of consecutive photo-induced electron transfer processes among the components, this hybrid compound exhibits fast-responsive reversible photochromic properties, and it efficiently photocatalytically oxidizes amines to imines under mild conditions with high yields and an excellent substrate application range.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt01003hDOI Listing

Publication Analysis

Top Keywords

hybrid compound
8
hybrid
5
merging photocatalyst
4
photocatalyst decatungstate
4
decatungstate naphthalene
4
naphthalene diimide
4
diimide hybrid
4
hybrid structure
4
structure oxidative
4
oxidative coupling
4

Similar Publications

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

Chalasoergodimers A-E, heterodimers with multiple polymerization modes from a marine-derived Chaetomium sp. fungus.

Nat Prod Bioprospect

September 2025

College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, People's Republic of China.

Five new heterodimers, chalasoergodimers A-E (1-5), and three known heterodimers (6-8), along with four chaetoglobosin monomers (9-12), were isolated from a marine-derived Chaetomium sp. fungus. The structures of new compounds 1-5 were elucidated by HRESIMS, NMR, chemical calculated C NMR and ECD methods.

View Article and Find Full Text PDF

A novel isatin-thiazole-coumarin hybrid and three isatin-hydantoin hybrids were synthesized and assessed for their α-glucosidase and anticholinesterase inhibitory activities. Moreover, their anticancer properties have been observed against the breast cancer cell lines MCF-7 and MDA-MB-231. The coumarin-containing hybrid exhibited the most potent biological activity across all assays.

View Article and Find Full Text PDF

Isatin (1-indole-2,3-dione) is a privileged nitrogen-containing heterocyclic framework that has received considerable attention in anticancer drug discovery owing to its general biological behavior and structural diversity. This review focuses on isatin-heterocyclic hybrids as a valuable model in the development of new anti-cancer drugs that may reduce side effects and help overcome drug resistance, discussing their synthetic approaches and mechanism of action as apoptosis induction through kinase inhibition. With various chemical modifications, isatin had an excellent ability to build powerful isatin hybrids and conjugates targeting multiple oncogenic pathways.

View Article and Find Full Text PDF

This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.

View Article and Find Full Text PDF