98%
921
2 minutes
20
Evolving to become bigger and/or longer lived should increase cancer susceptibility, but this predicted increase is not observed, a contradiction named Peto's paradox. A solution is that cancer suppression evolves to minimize cancer susceptibility, and the discovery of 19 retrogene (RTG) copies of the tumor suppressor gene TP53 in the African elephant () is increasingly cited as a classic example of such adaptive suppression. However, classic examples need rigorous evaluation and an alternative hypothesis is that the RTGs spread by genetic drift. This study shows that before its duplication, the ancestral elephant RTG was already truncated from 390 amino acids to 157 by a frameshift mutation, and that 14 of the 19 copies are now truncated to ≤88 amino acids. There was no compelling evidence of either positive or negative selection acting on these 88 codons, and the pattern of RTG accumulation fits a neutral model with a duplication rate of ~10 per generation. It is concluded that there is no evidence supporting the hypothesis that the 19 elephant RTGs spread to fixation by selection; instead, the evidence indicates that these RTGs accumulated primarily by segmental duplication and drift. It is shown that the evolutionary multistage model of carcinogenesis (EMMC) predicts the recruitment of 1-2 independently acting tumor suppressor genes to suppress the increased cancer risk in elephants, so it is possible that one or a few RTGs may have been favored by selection resulting in the known enhanced sensitivity of elephant cells to DNA damage. However, the analysis does not provide any support for either a direct (via conserved TP53 activity) or indirect (via supporting canonical TP53 function) role of the RTGs sequences, so that the presence of multiple copies of TP53 retrogenes in elephants needs to be further justified before being used as a classic example of tumor suppression in large-bodied animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108310 | PMC |
http://dx.doi.org/10.1111/eva.13383 | DOI Listing |
Cell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China.
Objectives: To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.
Methods: Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
College of Laboratory Medicine, Wannan Medical College, Wuhu 241000, China.
Objectives: To investigate the role of circular RNA circ_0000437 in regulating biological behaviors of breast cancer cells and the molecular mechanism.
Methods: Breast cancer MCF-7 and MDA-MB-231 cells were transfected with sh-circ_0000437, mimics, inhibitor, si-CTPS1, or their respective negative controls. qRT-PCR was used to detect the expression levels of circ_0000437, let-7b-5p, CTPS1, Notch1, Hes1, and Numb in breast cancer cell lines and tissues.