Exosomal MiRNAs in Osteosarcoma: Biogenesis and Biological Functions.

Front Pharmacol

Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MiRNAs are a group of non-coding RNA molecules that function in mRNA translational inhibition base-pairing with complementary sequences in target mRNA. In oncology, miRNAs have raised great attention due to their aberrant expression and pivotal roles in the pathogenesis of multiple malignancies including osteosarcoma. MiRNAs can be transported by exosome, the nano-extracellular vesicle with a diameter of 30-150 nm. Recently, a growing number of studies have demonstrated that exosomal miRNAs play a critical role in tumor initiation and progression, by exerting multiple biological functions including metastasis, angiogenesis, drug resistance and immunosuppression. In this review, we aim to depict the biogenesis of exosomal miRNAs and summarize the potential diagnostic and therapeutic functions of exosomal miRNAs in osteosarcoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110813PMC
http://dx.doi.org/10.3389/fphar.2022.902049DOI Listing

Publication Analysis

Top Keywords

exosomal mirnas
16
mirnas osteosarcoma
8
biological functions
8
mirnas
6
exosomal
4
osteosarcoma biogenesis
4
biogenesis biological
4
functions mirnas
4
mirnas group
4
group non-coding
4

Similar Publications

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Myostatin knockout mice muscle derived exosome inhibited dexamethasone-induced muscle atrophy.

Int Immunopharmacol

September 2025

Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China. Electronic address:

Objective: Long-term administration of dexamethasone (DEX) to treat severe inflammation or autoimmune disorders often result in skeletal muscle atrophy and functional decline. Exosomes facilitate intercellular communication by transferring bioactive molecules, reflecting the characteristics of their tissue of origin. Myostatin-knockout (MSTN) mice exhibit muscle hypertrophy, and their muscle-derived exosomes (KO-EXOs) retain this phenotype.

View Article and Find Full Text PDF

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF

Developing Potent Therapeutics for Liver Cancer Chemoresistance via an RNA Nanotech and Series-Circuit-Christmas-Bulb Mechanism Targeting ABC Transporters.

Mol Pharm

September 2025

Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.

Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.

View Article and Find Full Text PDF