98%
921
2 minutes
20
Lithium-rich cathodes (LRCs) show great potential to improve the energy density of commercial lithium-ion batteries owing to their cationic and anionic redox characteristics. Herein, a complete conductive network using carbon nanotubes (CNTs) additives to improve the poor kinetics of LRCs is fabricated. Ex situ X-ray photoelectron spectroscopy first demonstrates that the slope at a low potential and the following long platform can be assigned to the transition metal and oxygen redox, respectively. The combination of galvanostatic intermittent titration technique and electrochemical impedance spectroscopy further reveal that a battery with CNTs exhibited accelerated kinetics, especially for the O-redox process. Consequently, LRCs with CNTs exhibit a much better rate and cycling performance (≈89% capacity retention at 2 C for over 200 cycles) than the Super P case. Eventually, TEM results imply that the improved electrochemical performance of the CNTs case also benefits from its more stable bulk and surface structures. Such a facile conductive additive modification strategy also provides a universal approach for the enhancement of the electron diffusion properties of other electrode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202200449 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
Electrochemical CO capture (eCC) excels in selectivity, reversibility, low-temperature operation, and reusability, yet liquid-phase systems struggle with mass transfer limitations. In this study, a phenazine-based capture agent was chemically grafted onto carboxylated carbon nanotubes, achieving an active loading of 4.4 wt %.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDF