Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global warming is modifying the phenology, life-history traits and biogeography of species around the world. Evidence of these effects have increased over recent decades; however, we still have a poor understanding of the possible outcomes of their interplay across global climatic gradients, hindering our ability to accurately predict the consequences of climate change in populations and ecosystems. We examined the effect that changes in biogeography can have on the life-history traits of two of the most successful range-extending fish species in the world: the tropical rabbitfishes Siganus fuscescens and Siganus rivulatus. Both species have established abundant populations at higher latitudes in the northern and southern hemispheres and have been identified as important ecological engineers with the potential to alter the community structure of seaweed forests (Laminariales and Fucales) in temperate regions. Life-history trait information from across their global distribution was compiled from the published literature and meta-analyses were conducted to assess changes in (i) the onset and duration of reproductive periods, (ii) size at maturity, (iii) fecundity, (iv) growth rates, (v) maximum body sizes and (vi) longevity in populations at the leading edge of range expansion in relation to sea surface temperature and primary productivity (a common proxy for nutritional resource levels). Populations at highest latitudes had shortened their reproductive periods and reduced growth rates, taking longer to reach sexual maturity and maximum sizes, but compensated this with higher fecundity per length class and longer lifespans than populations in warmer environments. Low primary productivity and temperature in the Mediterranean Sea resulted in lower growth rates and body sizes for S. rivulatus, but also lower length at maturity, increasing life-time reproductive output. The results suggest that plasticity in the phenology and life-history traits of range-expanding species would be important to enhance their fitness in high latitude environments, facilitating their persistence and possible further poleward expansions. Quantifying the magnitude and direction of these responses can improve our understanding and ability to forecast species redistributions and its repercussions in the functioning of temperate ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546425PMC
http://dx.doi.org/10.1111/1365-2656.13739DOI Listing

Publication Analysis

Top Keywords

life-history traits
12
growth rates
12
phenology life-history
8
reproductive periods
8
body sizes
8
primary productivity
8
species
5
populations
5
maximization fitness
4
fitness phenological
4

Similar Publications

Objective: The transition to college is a period of growth and vulnerability for young adult health and well-being and provides a critical window for potential behavioral interventions. In this study, we sought to examine the trajectory of anxiety symptoms and their association with individual characteristics, exposure to stressors, and sleep behaviors during the transition to college.

Method: We recruited full-time, incoming undergraduate students at a university in the northeastern United States to participate during the first semester of college between October 21, 2022, and December 12, 2022.

View Article and Find Full Text PDF

Unlabelled: Marinisomatota (formerly recognized as Marinimicrobia, Marine Group A, and SAR406) are ubiquitous and abundant in marine environments, traditionally characterized as heterotrophic microorganisms. However, certain members of Marinisomatota have demonstrated the capacity to harness light for carbon dioxide fixation and the synthesis of organic compounds, thriving in the translucent zone or transitioning between the translucent and aphotic layers. The metabolic strategies driving the shift in trophic behaviors, and the factors influencing these transitions, remain largely unexplored.

View Article and Find Full Text PDF

Protocol: An absolute egg-to-adult viability assay in .

MicroPubl Biol

August 2025

Biological Sciences, Auburn University, Auburn, Alabama, United States.

Measures of organismal fitness must take into account reproductive output and survivorship across life-history stages. In , a laboratory model system, these traits are often quantified with egg-laying assays and egg-to-adult viability. While several protocols for automated egg counting exist, these methods typically preclude directly analyzing phenotypic distributions in resulting adults.

View Article and Find Full Text PDF

Conservation planning for environmental water to climate refugia in the manageable Murray-Darling Basin.

J Environ Manage

September 2025

Centre for Applied Water Science, University of Canberra, ACT, Australia; Department of Zoology, University of Otago, Dunedin, New Zealand.

One mechanism for improving the resilience of freshwater systems affected by climate change is to use environmental water to support refugial habitats which allow species, ecosystems and functions to persist and recover after severe droughts. We applied systematic conservation planning (SCP) to prioritise wetlands and lakes with the aim of informing the delivery of environmental water for the creation and protection of refugia habitat in the Murray-Darling Basin, Australia. SCP uses a complimentary algorithm to generate planning solutions that protect all target ecological assets for the lowest "cost" of the management constraints considered.

View Article and Find Full Text PDF

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF