Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lindl. () is a medicinal plant with effective broad-spectrum antibacterial activity, which can also inhibit biofilm formation. The processing of herbal medicine can purify medicinal materials, provide acceptable taste, reduce toxicity, enhance efficacy, influence performance and facilitate preparation. Thus, the aim of this study was to enhance the biofilm inhibition activity of toward () using the best processing method. The content of rutin and flavonoids and the ability to inhibit the biofilm formation by were examined using four processing methods. One of the best methods, the process of stir-frying with vinegar, was optimized based on the best rutin content by response surface methodology. The histidine content and gene expression of biofilm , resulting from stir-frying with vinegar, were evaluated and were found to be significantly decreased and down-regulated, respectively. The results show that stir-fried with vinegar can be used to effectively treat diseases resulting from infection. This is because it significantly inhibited biofilm formation by interfering with the biosynthesis of histidine; thus, its mechanism of action is decreasing histidine synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9074935PMC
http://dx.doi.org/10.1039/c9ra06224fDOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
response surface
8
surface methodology
8
inhibit biofilm
8
stir-frying vinegar
8
biofilm
6
process optimization
4
optimization lindl
4
lindl response
4
methodology biofilm
4

Similar Publications

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Population-level bistability in quorum sensing.

mBio

September 2025

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.

View Article and Find Full Text PDF

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Urinary catheters: state of the art and future perspectives - a narrative review.

Mater Today Bio

October 2025

University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000, Maribor, Slovenia.

Catheter associated urinary tract infection (CAUTI) is the most frequent healthcare associated infection, arising from microbial adhesion to catheter surfaces, biofilm development, and the growing problem of antimicrobial resistance. Many publications have addressed CAUTI epidemiology, biofilm biology, or biomaterials for catheters in isolation, yet there is little literature that connects these areas into a coherent translational perspective. This review seeks to fill that gap by combining an overview of biofilm pathophysiology with recent advances in material based innovations for catheter design, including nanostructured and responsive coatings, sensor enabled systems, additive manufacturing, and three dimensional printing.

View Article and Find Full Text PDF

Metabolic interplay of SCFA's in the gut and oral microbiome: a link to health and disease.

Front Oral Health

August 2025

Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.

Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.

View Article and Find Full Text PDF