98%
921
2 minutes
20
The realization of grain yield in wheat is decided by source-sink balance under prevailing environmental conditions. Management conditions like changing the sowing time influence the source-sink capacity through modification in agronomic traits. Therefore, this experiment was conducted to decipher the influence of spike architectural traits (SATs) on grain yield and to open avenues for further grain yield enhancement. Comparatively early sowing over timely sowing gives the advantage of realizing higher grain yield with a positive relationship with SATs namely spike length, spikelets per spike, individual spike weight, individual grain weight, number of grains per spikelet, grain length, and grain width of upper and lower spike portion. Confirmatory factorial analysis revealed that spike length, spikelets per spike, individual spike weight, grains per spikelet were having a significant effect in deciding grain yield in early sown. The presence of a significant effect of genotype by environment interaction over grain yield and SATs allows the exploitation of available genotypic and environmental variability for further yield enhancement. GGE analysis on transformed and standardized grain yield-trait (GY-trait) combinations was used in the selection of genotypes having high GY-trait combinations for both sowing times. In early sowing, WG 11 was the best for high GY with high individual spike weight; grain length and grain width at lower and upper parts of the spike; and shorter days to 50% flowering. Genotypes exclusively having the high GY-trait combination along with low values of remaining GY-trait combinations were also selected with genotype focused GGE approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073038 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2022.01.007 | DOI Listing |
Sci Adv
September 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
Background: Stored-product insects (Sitophilus spp., Plodia interpunctella, Sitotroga cerealella) drive substantial postharvest losses and increasingly resist synthetic fumigants. Valeriana wallichii roots yield volatile oils rich in short-chain acids and sesquiterpenes.
View Article and Find Full Text PDFAnn Bot
September 2025
The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.
Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.
Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.
Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.