98%
921
2 minutes
20
This study investigated the effects of adding biochar (BC) on the fate of ciprofloxacin (CIP) and its related antibiotic tolerance (AT) in activated sludge. Three activated sludge reactors were established with different types of BC, derived from apple, pear, and mulberry tree, respectively, and one reactor with no BC. All reactors were exposed to an environmentally relevant level of CIP that acted as a definitive selective pressure significantly promoting AT to four representative antibiotics (CIP, ampicillin, tetracycline, and polymyxin B) by up to two orders of magnitude. While CIP removal was negligible in the reactor without BC, the BC-dosed reactors effectively removed CIP (70-95% removals) through primarily adsorption by BC and biodegradation/biosorption by biomass. The AT in the BC-added reactors was suppressed by 10-99%, compared to that without BC. The BC addition played a key role in sequestering CIP, thereby decreasing the selective pressure that enabled the proactive prevention of AT increase. 16S rRNA gene sequencing analysis showed that the BC addition alleviated the CIP-mediated toxicity to community diversity and organisms related to phosphorous removal. Machine learning modeling with random forest and support vector models using AS microbiome data collectively pinpointed Achromobacter selected by CIP and strongly associated with the AT increase in activated sludge. The identification of Achromobacter as an important AT bacteria revealed by the machine learning modeling with multiple models was also validated with a linear Pearson's correlation analysis. Overall, our study highlighted Achromobacter as a potential useful sentinel for monitoring AT occurring in the environment and suggested BC as a promising additive in wastewater treatment to improve micropollutant removal, mitigate potential AT propagation, and maintain community diversity against toxic antibiotic loadings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119407 | DOI Listing |
Microbiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho
The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.
View Article and Find Full Text PDF