Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Accumulating evidence supports that prostate cancer stem-like cells (PCSCs) play significant roles in therapy resistance and metastasis of prostate cancer. Many studies also show that nitric oxide (NO) synthesized by NO synthases can function to promote tumor progression. However, the exact roles of NOSs and NO signaling in the growth regulation of PCSCs and castration-resistant prostate cancer (CRPC) are still not fully understood.

Methods: The regulatory functions of NOS-NO signaling were evaluated in prostate cancer cells, especially in PCSCs enriched by 3D spheroid culture and CD133/CD44 cell sorting. The molecular mechanisms of NOS-NO signaling in PCSCs growth regulation and tumor metastasis were investigated in PCSCs and mice orthotopic prostate tumor model.

Results: Endothelial NOS (eNOS) exhibited a significant upregulation in high-grade prostate cancer and metastatic CRPC. Xenograft models of CRPC exhibited notable increased eNOS expression and higher intracellular NO levels. PCSCs isolated from various models displayed significant enhanced eNOS-NO signaling. Functional analyses demonstrated that increased eNOS expression could promote in vivo tumorigenicity and metastatic potential of prostate cancer cells. Characterization of eNOS-NO involved downstream pathway which confirmed that enhanced eNOS signaling could promote the growth of PCSCs and antiandrogen-resistant prostate cancer cells via an activated downstream NO-sGC-cGMP-PKG effector signaling pathway. Interestingly, eNOS expression could be co-targeted by nuclear receptor ERRα and transcription factor ERG in prostate cancer cells and PCSCs.

Conclusions: Enhanced eNOS-NO signaling could function to promote the growth of PCSCs and also the development of metastatic CRPC. Besides eNOS-NO as potential targets, targeting its upstream regulators (ERRα and ERG) of eNOS-NO signaling could also be the therapeutic strategy for the management of advanced prostate cancer, particularly the aggressive cancer carrying with the TMPRSS2:ERG fusion gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080127PMC
http://dx.doi.org/10.1186/s13287-022-02864-6DOI Listing

Publication Analysis

Top Keywords

prostate cancer
40
enos-no signaling
16
cancer cells
16
promote growth
12
enos expression
12
prostate
11
cancer
11
signaling
9
nitric oxide
8
cancer stem-like
8

Similar Publications

Purpose: To evaluate the impact of an optimized online adaptive radiation therapy workflow on physician involvement.

Methods And Materials: Data from a prospective phase 2 trial involving 34 prostate cancer patients treated with cone beam computed tomography (CBCT)-based online adaptive radiation therapy (62 Gy in 20 fractions) were analyzed. Manual interventions were required for 2 steps in the workflow: radiation therapy technologist review and adjustment of automatically segmented organs, guiding target segmentation, so-called "influencer," while physicians reviewed and refined the targets.

View Article and Find Full Text PDF

SLC16A3 (MCT4) expression in tumor immunity and Metabolism: Insights from pan-cancer analysis.

Biochem Biophys Rep

June 2025

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.

Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.

View Article and Find Full Text PDF

Objectives: To develop a novel risk score (RS) model to predict the probability of progression to castration-resistant prostate cancer (PCa) (CRPC) after intensity-modulated radiation therapy (IMRT) for patients with high- and very high-risk PCa according to the National Comprehensive Cancer Network (NCCN) risk classification, since accurate prediction of the clinical outcome of definitive radiation therapy for patients with high- and very high-risk PCa remains challenging due to its heterogeneity.

Materials And Methods: We conducted a retrospective review of 600 patients with high- and very high-risk PCa treated with IMRT at our institution. They were randomly divided into discovery (n = 300) and validation (n = 300) cohorts.

View Article and Find Full Text PDF

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

A family history of prostate cancer in first-degree relatives is an established risk factor for prostate cancer, but the specific associations between prostate cancer characteristics in fathers and the risk of high-risk prostate cancer in their sons remain unclear. We identified men in Prostate Cancer data Base Sweden whose fathers had been diagnosed with prostate cancer in 1998-2005. We compared the observed number of prostate cancer diagnoses in these men with the expected number in the Swedish male population, estimating standardized incidence ratios (SIR).

View Article and Find Full Text PDF