Biomanufacturing human tissues via organ building blocks.

Cell Stem Cell

Wyss Institute for Biologically Inspired Engineering & John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA. Electronic address:

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The construction of human organs on demand remains a tantalizing vision to solve the organ donor shortage. Yet, engineering tissues that recapitulate the cellular and architectural complexity of native organs is a grand challenge. The use of organ building blocks (OBBs) composed of multicellular spheroids, organoids, and assembloids offers an important pathway for creating organ-specific tissues with the desired cellular-to-tissue-level organization. Here, we review the differentiation, maturation, and 3D assembly of OBBs into functional human tissues and, ultimately, organs for therapeutic repair and replacement. We also highlight future challenges and areas of opportunity for this nascent field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617289PMC
http://dx.doi.org/10.1016/j.stem.2022.04.012DOI Listing

Publication Analysis

Top Keywords

human tissues
8
organ building
8
building blocks
8
biomanufacturing human
4
tissues
4
tissues organ
4
blocks construction
4
construction human
4
human organs
4
organs demand
4

Similar Publications

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF

Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.

Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).

View Article and Find Full Text PDF

The aim of this study was to assess the prevalence of temporomandibular disorder (TMD) and associated factors in an adult population in southern Brazil. The population-based sample (n = 4.65) included participants from Passo Fundo, a town in southern Brazil.

View Article and Find Full Text PDF

This study assessed the effect of saliva exposure on roughness (Ra) and Vickers hardness (VHN) of two direct restorative materials, enamel, and dentin adjacent to the restorations. Enamel and dentin cavities in molars (n = 10) were restored with a) bulk-fill resin composite (Tetric N-Flow Bulk Fill, BF) with the application of a universal adhesive (Tetric N-Bond Universal) and b) alkasite restorative material (Cention N, CN) with and without the application of a universal adhesive. After 24 h (baseline), surface roughness and hardness of the restorative material and dental tissues were assessed at 100 μm from the tooth/restoration interface.

View Article and Find Full Text PDF

The aim of this in-vitro study was to verify which field of view (FOV) in cone-beam computed tomography (CBCT) yields greater accuracy in the detection of internal root resorption (IRR) volume, in comparison to the gold standard of micro-computed tomography (micro-CT) and to a physical method. Twenty-five extractedsingle-rooted teeth were scanned by CBCT with two different FOV parameters (6x6-FOV and 10x10-FOV) and via micro-CT. The volume of dental hard tissue was measured on these images.

View Article and Find Full Text PDF