Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nondestructive cell membrane permeabilization systems enable the intracellular delivery of exogenous biomolecules for cell engineering tasks as well as the temporal sampling of cytosolic contents from live cells for the analysis of dynamic processes. Here, we report a format live-cell analysis device (LCAD) that can perform localized-electroporation induced membrane permeabilization, for cellular delivery or sampling, and directly interfaces with surface-based biosensors for analyzing the extracted contents. We demonstrate the capabilities of the LCAD via an automated high-throughput workflow for multimodal analysis of live-cell dynamics, consisting of quantitative measurements of enzyme activity using self-assembled monolayers for MALDI mass spectrometry (SAMDI) and deep-learning enhanced imaging and analysis. By combining a fabrication protocol that enables robust assembly and operation of multilayer devices with embedded gold electrodes and an automated imaging workflow, we successfully deliver functional molecules (plasmid and siRNA) into live cells at multiple time-points and track their effect on gene expression and cell morphology . Furthermore, we report sampling performance enhancements, achieving saturation levels of protein tyrosine phosphatase activity measured from as few as 60 cells, and demonstrate control over the amount of sampled contents by optimization of electroporation parameters using a lumped model. Lastly, we investigate the implications of cell morphology on electroporation-induced sampling of fluorescent molecules using a deep-learning enhanced image analysis workflow.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c00698DOI Listing

Publication Analysis

Top Keywords

live cells
12
intracellular delivery
8
delivery sampling
8
membrane permeabilization
8
deep-learning enhanced
8
cell morphology
8
sampling
5
analysis
5
high-throughput microfluidics
4
microfluidics platform
4

Similar Publications

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF

Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Cryo-electron tomography (cryoET) provides 3D datasets of organelles and proteins at nanometer and sub-nanometer resolution. However, locating target proteins in live cells remains a significant challenge. Conventional labeling methods, such as fluorescent protein tagging and immunogold labeling, are unsuitable for small structures in vitrified samples at molecular resolution.

View Article and Find Full Text PDF