Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts.

Phys Chem Chem Phys

Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity decreases with increasing grafting density , grafted chain length , and matrix chain length . This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing , the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in . At extremely high , the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing , both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by ∼ -γg with 0.5 < < 1. Increasing would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where ∼ . These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00002dDOI Listing

Publication Analysis

Top Keywords

effective core
12
polymer-grafted nanoparticles
8
chain length
8
core size
8
free-draining layer
8
reduction diffusivity
8
diffusivity
5
layer
5
diffusion polymer-grafted
4
nanoparticles dynamical
4

Similar Publications

Background: Bridge preparation skills are a vital component of dental education and require specific techniques. This study aimed to develop and evaluate 3D printed teeth for use in defect-oriented bridge preparation and pre-prosthetic exercises in dental training, addressing the limited customization and lack of integrated workflows found in commercial typodont teeth. The null hypothesis stated that 3D printed teeth offered no advantage over established typodont training methods for bridge preparation.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Antimicrobial stewardship from a One Health perspective.

Nat Rev Microbiol

September 2025

National Centre for Antimicrobial Stewardship, Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne, Carlton, Victoria, Australia.

The global rise of antimicrobial resistance (AMR) poses a profound threat to human, animal and environmental health. Although antimicrobials have revolutionized modern medicine, their overuse and misuse have accelerated AMR, necessitating urgent, multisectoral action. Antimicrobial stewardship (AMS), a set of coordinated strategies that promote responsible antimicrobial use, has emerged as a key intervention in managing AMR.

View Article and Find Full Text PDF

Flexible suction-coagulation probe restores dexterity in robot-assisted surgery: bench-to-bedside evaluation.

Surg Endosc

September 2025

Department of Next Generation Endoscopic Intervention (Project ENGINE), Graduate School of Medicine, The University of Osaka, Suite 0802, BioSystems Bldg., 1-3, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Objective: Rigid suction-coagulation probes constrain the wrist-like articulation that is central to robotic surgery. We therefore designed a 5-mm single-use flexible suction ball coagulator (flex-SBC) with a modified core design to restore dexterity and assessed its mechanical performance and early clinical feasibility, including the effect of the common robotic gripping strategies on suction flow.

Methods: Preclinical.

View Article and Find Full Text PDF

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF