98%
921
2 minutes
20
The fields of click chemistry and biocatalysis have rapidly grown over the last two decades. The development of robust and active biocatalysts and the widespread use of straightforward click reactions led to significant interactions between these two fields. Therefore the name bio-click chemistry seems to be an accurate definition of chemoenzymatic reactions cooperating with click transformations. Bio-click chemistry can be understood as the approach towards molecules of high-value using a green and sustainable approach by exploiting the potential of biocatalytic enzyme activity combined with the reliable nature of click reactions. This review summarizes the principal bio-click chemistry reactions reported over the last two decades, with a special emphasis on small molecules. Contributions to the field of bio-click chemistry are manifold, but the synthesis of chiral molecules with applications in medicinal chemistry and sustainable syntheses will be especially highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979012 | PMC |
http://dx.doi.org/10.1039/d1ra08053a | DOI Listing |
Acc Chem Res
January 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
Synthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.
View Article and Find Full Text PDFUltrason Sonochem
November 2022
NanoTheranostics Laboratory, Australian Center for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia. Electronic address:
Nisin, a peptide used as a natural food preservative, is employed in this work for the development of a novel nanocarrier system. Stable and uniform nisin-shelled nanoemulsions (NSNE) with a diameter of 100 ± 20 nm were successfully prepared using 20 kHz flow-through ultrasonication technique. The NSNE showed limited toxicity, high bactericidal activity and high drug loading capacity (EE 65 % w/w).
View Article and Find Full Text PDFRSC Adv
January 2022
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Chile
The fields of click chemistry and biocatalysis have rapidly grown over the last two decades. The development of robust and active biocatalysts and the widespread use of straightforward click reactions led to significant interactions between these two fields. Therefore the name bio-click chemistry seems to be an accurate definition of chemoenzymatic reactions cooperating with click transformations.
View Article and Find Full Text PDFCancers (Basel)
September 2021
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Bispecific antibodies (BsAbs) for T cell engagement have shown great promise in cancer immunotherapy, and their clinical applications have been proven in treating hematological malignance. Bispecific antibody binding fragment (BiFab) represents a promising platform for generating non-Fc bispecific antibodies. However, the generation of BiFab is still challenging, especially by means of chemical conjugation.
View Article and Find Full Text PDFAdv Healthc Mater
December 2013
Institute of Organic Chemistry III, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Versatile nanocarrier systems facilitating uptake of exogenous proteins are highly alluring in evaluating these proteins for therapeutic applications. The self-assembly of an efficient nano-sized protein transporter consisting of three different entities is presented: A streptavidin protein core functioning as an adapter, second generation polyamidoamine dendrons for facilitating cell uptake as well as two different therapeutic proteins (tumor suppressor p53 or pro-apoptotic cytochrome c as cargo). Well-defined dendrons containing a biotin core are prepared and display no cytotoxic behavior upon conjugation to streptavidin.
View Article and Find Full Text PDF