Escherichia coli RfaH, a member of the universally conserved NusG family of transcription factors, regulates its function by undergoing a structural rearrangement of its C-terminal domain (CTD) upon recruitment to RNA polymerase (RNAP) paused at the DNA signal known as operon polarity suppressor (ops) element. While it is known that the fold-switch of RfaH CTD from an α-helical hairpin (autoinhibited state) into a β-barrel (active state) is controlled by interactions between the N-terminal domain (NTD) and CTD, which are broken apart upon NTD binding to RNAP, a comprehensive analysis of residues that stabilize the autoinhibited state is lacking. Here, we utilize a combination of molecular dynamics (MD), protein structure prediction, and in vivo functional assays as a workflow to determine key interdomain (ID) residues controlling the fold-switch of RfaH.
View Article and Find Full Text PDFThe human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability.
View Article and Find Full Text PDFThe active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1 in the disordered light chain and C122 in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies.
View Article and Find Full Text PDFRfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a β-barrel, which binds the ribosome.
View Article and Find Full Text PDFTranscription factors (TFs) regulate gene expression by binding to specific DNA sequences and gating access to genes. Even when the binding of TFs and their cofactors to DNA is reversible, indicating a reversible control of gene expression, there is little knowledge about the molecular effect DNA has on TFs. Using single-molecule multiparameter fluorescence spectroscopy, molecular dynamics simulations, and biochemical assays, we find that the monomeric form of the forkhead (FKH) domain of the human FoxP1 behaves as a disordered protein and increases its folded population when it dimerizes.
View Article and Find Full Text PDFIn the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information.
View Article and Find Full Text PDFThe COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer.
View Article and Find Full Text PDFEnergetic local frustration offers a biophysical perspective to interpret the effects of sequence variability on protein families. Here we present a methodology to analyze local frustration patterns within protein families and superfamilies that allows us to uncover constraints related to stability and function, and identify differential frustration patterns in families with a common ancestry. We analyze these signals in very well studied protein families such as PDZ, SH3, ɑ and β globins and RAS families.
View Article and Find Full Text PDFMetamorphic proteins are a paradigm of the protein folding process, by encoding two or more native states, highly dissimilar in terms of their secondary, tertiary, and even quaternary structure, on a single amino acid sequence. Moreover, these proteins structurally interconvert between these native states in a reversible manner at biologically relevant timescales as a result of different environmental cues. The large-scale rearrangements experienced by these proteins, and their sometimes high mass interacting partners that trigger their metamorphosis, makes the computational and experimental study of their structural interconversion challenging.
View Article and Find Full Text PDFSeveral hydrolases have been described to degrade polyethylene terephthalate (PET) at moderate temperatures ranging from 25°C to 40°C. These mesophilic PET hydrolases (PETases) are less efficient in degrading this plastic polymer than their thermophilic homologs and have, therefore, been the subject of many protein engineering campaigns. However, enhancing their enzymatic activity through rational design or directed evolution poses a formidable challenge due to the need for exploring a large number of mutations.
View Article and Find Full Text PDFTranscription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules.
View Article and Find Full Text PDFBiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding.
View Article and Find Full Text PDFHuman FoxP proteins share a highly conserved DNA-binding domain that dimerizes via three-dimensional domain swapping, although showing varying oligomerization propensities among its members. Here, we present an experimental and computational characterization of all human FoxP proteins to unravel how their amino acid substitutions impact their folding and dimerization mechanism. We solved the crystal structure of the forkhead domain of FoxP4 to then perform a comparison across all members, finding that their sequence changes impact not only the structural heterogeneity of their forkhead domains but also the protein-protein association energy barrier.
View Article and Find Full Text PDFTranscription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)-known to form coiled-coil dimers-and a Forkhead (FKH) domain-known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization.
View Article and Find Full Text PDFPoly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from (PETase) having optimal catalytic activity at 30-35 °C. Crystal structures of PETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release.
View Article and Find Full Text PDFComput Struct Biotechnol J
October 2022
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein.
View Article and Find Full Text PDFIndigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives.
View Article and Find Full Text PDFIn every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis.
View Article and Find Full Text PDFThe NusG protein family is structurally and functionally conserved in all domains of life. Its members directly bind RNA polymerases and regulate transcription processivity and termination. RfaH, a divergent sub-family in its evolutionary history, is known for displaying distinct features than those in NusG proteins, which allows them to regulate the expression of virulence factors in enterobacteria in a DNA sequence-dependent manner.
View Article and Find Full Text PDFThe fields of click chemistry and biocatalysis have rapidly grown over the last two decades. The development of robust and active biocatalysts and the widespread use of straightforward click reactions led to significant interactions between these two fields. Therefore the name bio-click chemistry seems to be an accurate definition of chemoenzymatic reactions cooperating with click transformations.
View Article and Find Full Text PDFThe intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA).
View Article and Find Full Text PDFCyanobacteria possesses the simplest circadian clock, composed of three proteins that act as a phosphorylation oscillator: KaiA, KaiB, and KaiC. The timing of this oscillator is determined by the fold-switch of KaiB, a structural rearrangement of its C-terminal half that is accompanied by a change in the oligomerization state. During the day, KaiB forms a stable tetramer (gsKaiB), whereas it adopts a monomeric thioredoxin-like fold during the night (fsKaiB).
View Article and Find Full Text PDFReverse transcription-loop-mediated isothermal amplification (RT-LAMP) has gained popularity for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The high specificity, sensitivity, simple protocols, and potential to deliver results without the use of expensive equipment has made it an attractive alternative to RT-PCR. However, the high cost per reaction, the centralized manufacturing of required reagents, and their distribution under cold chain shipping limit RT-LAMP's applicability in low-income settings.
View Article and Find Full Text PDFThe COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer.
View Article and Find Full Text PDF