Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron oxides are regarded as promising anodes for both lithium-ion batteries (LIBs) and potassium-ion batteries (KIBs) due to their high theoretical capacity, abundant reserves, and low cost, but they are also facing great challenges due to the sluggish reaction kinetics, low electronic conductivity, huge volume change, and unstable electrode interphases. Moreover, iron oxides are normally prepared at high temperature, forming large particles because of Ostwald ripening, and exhibiting low electronic/ionic conductivity and unfavorable mechanical stability. To address those issues, herein, we have synthesized ultra-small FeO nanodots encapsulated in layered carbon nanosheets (FeO@LCS), using the coordination interaction between catechol and Fe, demonstrating fast reaction kinetics, high capacity, and typical capacitive-controlled electrochemical behaviors. Such FeO@LCS nanocomposites were derived from coordination compounds with layered structures van der Waals's force. FeO@LCS-500 (annealed at 500 °C) nanocomposites have displayed attractive features of ultra-small particle size (∼5 nm), high surface area, mesoporous and layered feature. When used as anodes, FeO@LCS-500 nanocomposites delivered exceptional electrochemical performances of high reversible capacity, excellent cycle stability and rate performance for both LIBs and KIBs. Such exceptional performances are highly associated with features of FeO@LCS-500 nanocomposites in shortening Li/K ion diffusion length, fast reaction kinetics, high electronic/ionic conductivity, and robust electrode interphase stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693532PMC
http://dx.doi.org/10.1039/d0ra08503kDOI Listing

Publication Analysis

Top Keywords

reaction kinetics
12
ultra-small feo
8
feo nanodots
8
nanodots encapsulated
8
encapsulated layered
8
layered carbon
8
carbon nanosheets
8
iron oxides
8
electronic/ionic conductivity
8
fast reaction
8

Similar Publications

In this work, the superbase-mediated self-organization of tetrasubstituted pyrroles from three molecules of acetylenes and one molecule of nitriles was theoretically investigated. On the example of interaction of phenylacetylene with benzonitrile in the KOBu/DMSO medium, three possible pathways of the assembly of 2-benzyl-3,5-diphenyl-4-phenylethynyl-1-pyrrole have been studied using a combined B2PLYP-D3/6-311+G**//B3LYP-D3/6-31+G* quantum chemical approach. The calculated activation barriers correspond to mild reaction conditions (room temperature for 15 min).

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) dimerization plays a pivotal role in cellular signaling, influencing proliferation and disease progression, particularly in cancer. Despite extensive studies, the quantitative relationship between EGFR expression levels and dimerization efficiency remains incompletely understood. In this study, we investigated EGFR dimerization kinetics using ensemble-level biochemical assays and single-molecule tracking (SMT) in living cells.

View Article and Find Full Text PDF

Two-dimensional 1T-phase MnIrO for high-performance acidic oxygen evolution reaction.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.

View Article and Find Full Text PDF

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF