Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The structures and thermal properties of three new hybrid one-dimensional (1D) polymers based on zinc bis(diarylphosphate)s containing -substituted phenyl rings are reported. The crystal structures of Zn[OP(-OCHNO)] (1), Zn[OP(-OCHOMe)] (2) and Zn[OP(-OCHCOEt)] (3) differ from that of their unsubstituted analogue, Zn[OP(OPh)] (ZnDPhP). Compounds 1 and 3 consist of tetrahedrally coordinated zinc cations connected by double bridges of phosphate groups (2+2 bridging mode) and form polymeric chains that are packed in a distorted hexagonal lattice with six closest neighbours. In compound 2 zinc cations are linked by alternating single and triple phosphate bridges (3+1 bridging mode) and the resulting chains, having only four closest neighbors, are packed in a distorted tetragonal manner. DFT computations revealed that the 2+2 bridging mode, even at the highest energy conformation, is more stable than the 3+1 one. Simultaneous Thermal Analysis, Raman spectroscopy and powder XRD (PXRD) studies show that pyrolysis of the studied hybrid polymers begins above 260 °C, leading to a mixture of zinc condensed phosphates and carbonaceous deposits that may have electron-conducting properties. DSC and PXRD studies provide evidence that crystalline domains in 2 and 3 rearrange and/or disappear at a much lower temperature (. 150 °C) leading to an isotropic liquid (in the case of 3) or an amorphous solid material (in the case of 2). Electrorheological measurements indicate that 1-3 are polarized in an external electric field, and the type of electrorheological effect depends on the type of functional group attached to the phenyl ring; this feature can be utilized in designing new electrorheological devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt00492eDOI Listing

Publication Analysis

Top Keywords

bridging mode
12
hybrid polymers
8
zinc cations
8
2+2 bridging
8
packed distorted
8
pxrd studies
8
°c leading
8
zinc
5
influence substituents
4
substituents aryl
4

Similar Publications

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.

Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.

View Article and Find Full Text PDF

Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).

View Article and Find Full Text PDF

Optimizing noise control in flexible shells with bridging membrane discs variations.

PLoS One

September 2025

Department of Mathematics, College of Science, Jouf University, Sakaka, Saudi Arabia.

This study explores the acoustic behavior of flexible cylindrical shells incorporating membrane discs at structural interfaces, focusing on their influence on wave propagation characteristics. The dynamics of the embedded membrane discs are modeled at the junctions between different shell segments, and the resulting boundary value problem is addressed using a combination of the Mode-Matching (MM) and Galerkin methods. The governing equations comprise the Helmholtz equation in the fluid domain and the Donnell-Mushtari shell equations in the elastic guiding regions.

View Article and Find Full Text PDF