Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Functional textiles with enhanced moisture management can facilitate sweat transport away from the skin to improve personal comfort. However, porous materials exhibit low capability of preventing the intrusion of external liquids, becoming a bottleneck in the design of medical protective clothing. Herein, a trilayered composite fabric based on a gradient wettability structure is demonstrated for directional water transport and resistance to blood penetration. The proposed fabric shows distinct advantages, including a high water breakthrough pressure of 2.43 kPa from the external side, an outstanding positive water transport index (1522%), and an antiblood penetration resistance of 2.71 kPa. Moreover, the fabric shows improved comfort with a high moisture transmission (320 g m h) and desired water evaporation rate (0.36 g h). This work addressed the concern of directional water transport and resistance to blood penetration while providing a comfortable wearing microenvironment, leading to a promising research direction for multifunctional medical textiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03136 | DOI Listing |