98%
921
2 minutes
20
Background: Hami melon (Cucumis melo var. saccharinus) is a popular fruit in China because of its excellent taste, which is largely determined by its physicochemical characteristics, including flesh texture, sugar content, aroma, and nutrient composition. However, the mechanisms by which these characteristics are regulated have not yet been determined. In this study, we monitored changes in the fruits of two germplasms that differed in physicochemical characteristics throughout the fruit development period.
Results: Ripe fruit of the bred variety 'Guimi' had significantly higher soluble sugar contents than the fruit of the common variety 'Yaolong.' Additionally, differences in fruit shape and color between these two germplasms were observed during development. Comparative transcriptome analysis, conducted to identify regulators and pathways underlying the observed differences at corresponding stages of development, revealed a higher number of differentially expressed genes (DEGs) in Guimi than in Yaolong. Moreover, most DEGs detected during early fruit development in Guimi were associated with cell wall biogenesis. Temporal analysis of the identified DEGs revealed similar trends in the enrichment of downregulated genes in both germplasms, although there were differences in the enrichment trends of upregulated genes. Further analyses revealed trends in differential changes in multiple genes involved in cell wall biogenesis and sugar metabolism during fruit ripening.
Conclusions: We identified several genes associated with the ripening of Hami melons, which will provide novel insights into the molecular mechanisms underlying the development of fruit characteristics in these melons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004126 | PMC |
http://dx.doi.org/10.1186/s12870-022-03550-8 | DOI Listing |
J Investig Allergol Clin Immunol
September 2025
Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background And Objectives: Pollen-food allergy syndrome (PFAS) is a frequent comorbidity in individuals with hay fever. Identifying risk factors and allergen clusters can aid targeted interventions and management strategies. Objective: This study characterizes PFAS in patients with hay fever and identifies associated risk factors using the mobile health platform, AllerSearch.
View Article and Find Full Text PDFFood Chem X
August 2025
Tianjin University, Tianjin 300072, People's Republic of China.
Thymol is a major monoterpene compound from plants. Thymol exhibits antifungal, antioxidant, and anti-inflammatory properties. Over the past few years, extensive research has underscored the pivotal role of thymol in delaying postharvest senescence in fruits and vegetables, suppressing fungal growth in meat products, and enhancing the shelf life of meat and processed foods.
View Article and Find Full Text PDFFront Nutr
August 2025
Thaer-Institute-Div. Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany.
Background: Changes in consumer food choices have been associated with transformation in the food environment. Despite the direct impact of consumers' food choices on their diet and health outcomes, there is a lack of comprehensive evidence regarding how various factors within the food environment impact these choices.
Methods: This study uses the Theory of Planned Behavior to examine how socio-psychological factors in the food environment influence consumers' healthy food choices.
Avocado () stands out as one of the most significant crops globally. Due to its abundance in essential nutrients and phytochemicals, its consumption and commercialization have notably surged in recent years. The interplay between genotype and environment profoundly influences fruit maturity dates and physicochemical attributes.
View Article and Find Full Text PDFFront Fungal Biol
August 2025
Department of Crop Science, University of Ghana, Accra, Ghana.
Chili pepper exports from Ghana are subject to stringent chemical residue regulations in key export destinations. Consequently, microbial biopesticides are urgently needed to complement current nonchemical control options for key pests of chili pepper, particularly the phytosanitary insect, False Codling Moth (FCM). Thus, the search for native entomopathogenic fungi in Ghanaian farms was initiated in 2023.
View Article and Find Full Text PDF