Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of peptide-based vaccines is enhanced by immunoinformatics, which predicts the patterns that B cells and T cells recognize. Although several tools are available for predicting the Major histocompatibility complex (MHC-I) binding peptides, the wide variants of human leucocyte antigen allele make it challenging to choose a peptide that will induce an immune response in a majority of people. In addition, for a peptide to be considered a potential vaccine candidate, factors such as T cell affinity, proteasome cleavage, and similarity to human proteins also play a major role. Identifying peptides that satisfy the earlier cited measures across the entire proteome is, therefore, challenging. Hence, the fuzzy inference system (FIS) is proposed to detect each peptide's potential as a vaccine candidate and assign it either a very high, high, moderate, or low ranking. The FIS includes input features from 6 modules (binding of 27 major alleles, T cell propensity, pro-inflammatory response, proteasome cleavage, transporter associated with antigen processing, and similarity with human peptide) and rules derived from an observation of features on positive samples. On validation of experimentally verified peptides, a balanced accuracy of ∼80% was achieved, with a Mathew's correlation coefficient score of 0.67 and an F-1 score of 0.74. In addition, the method was implemented on complete proteome of , which contains ∼4,800,000 peptides. Lastly, a searchable database of the ranked results of the proteome was made and is available online (MHC-FIS-LdDB). It is hoped that this method will simplify the identification of potential MHC-I binding candidates from a large proteome.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2021.0464DOI Listing

Publication Analysis

Top Keywords

major histocompatibility
8
histocompatibility complex
8
mhc-i binding
8
potential vaccine
8
vaccine candidate
8
proteasome cleavage
8
similarity human
8
proteome
6
harnessing fuzzy
4
fuzzy rule
4

Similar Publications

Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

Natural killer (NK) cell licensing is an educational process that enhances responsiveness to activating signals in maturing NK cells and is predominantly regulated by major histocompatibility complex (MHC) class I-specific inhibitory signals. However, the role of non-MHC signalling in this process remains unclear. Here, we investigated the role of FcRγ, an adaptor protein associated with activating receptors, in the regulation of NK cell responsiveness.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

September 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF