98%
921
2 minutes
20
The Psyche mission's Oxidation-Reduction Working Group is focused on understanding, determining, and applying the redox state of (16) Psyche to understand the origin of a metal-rich world. The oxidation-reduction state of an asteroid, along with its temperature, parent body size, and composition, is a key parameter in determining the history of an asteroid. Determining the redox state from spacecraft data is most easily done by examining potential metal-oxide buffer pairs. The occurrence of Ni, Fe, C, Cr, P and Si, in that order, in the metal or sulfide phase of an asteroidal body indicates increasingly reduced conditions. Key observations by the Imager and Gamma-Ray and Neutron Spectrometer (GRNS) of Psyche can bracket the redox state using metal-oxide buffers. The presence of Fe,Ni metal can be confirmed by the ratios of Fe/O or Fe/Si and the concentration of Ni variability in metal across the asteroid can be determined by GRNS. The FeO concentration of silicates is complementary to the Ni concentration of metal and can be constrained using filters on the Imager. The presence of FeO in silicates from ground-based observations is one of the few measurements we already have of redox state, although available data permit a wide range of silicate compositions and mineralogies. The presence of C, P or Si concentrated in the metallic, Fe-rich portion of the asteroid, as measured by GRNS, or Ca-sulfide, determined by imaging, would indicate increasingly reducing conditions. Linkage to known types of meteorites, whether metal-rich chondrites, stony-irons or irons, expands the mineralogical, chemical and isotopic data not available from remote observations alone. Redox also controls both silicate and metal mineralogy, influencing differentiation, solidification, and subsolidus cooling, including the relative abundance of sulfur in the core and possible magnetic signatures. The redox state of Psyche, if a fully-differentiated metallic core, might constrain the location and timing of both the formation of Psyche and any oxidation it might have experienced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942946 | PMC |
http://dx.doi.org/10.1007/s11214-022-00872-9 | DOI Listing |
J Org Chem
September 2025
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
Halogen atom transfer (XAT) is a pivotal strategy for generating carbon-centered radicals in organic chemistry, yet current methodologies often rely on toxic tin-based reagents or inefficient organosilanes. This study explores diazaphosphinyl (-heterocyclic phosphinyl, NHP) radicals as new halogen abstractors, leveraging their nucleophilic and halophilic properties. We synthesized a series of NHP-X (X = Cl or Br) compounds, systematically determining their P-X bond energies and related redox potentials.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Shenzhen Institute for drug Control, Shenzhen, China.
Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.
Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.
Front Cell Dev Biol
August 2025
Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.
View Article and Find Full Text PDFMater Horiz
September 2025
Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI a simple melting method. The molecular crystal has both Li and I channels and can be either a Li or an I conductor. In the stoichiometric crystal (Adpn)LiI, the Li ions interact only with four CN groups of Adpn, while the I ions are uncoordinated.
View Article and Find Full Text PDF