A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA's Discovery Program Psyche mission to the M-class asteroid (16) Psyche. The GRNS instrument is designed to measure the elemental composition of Psyche with the goal to understand the origin of this mysterious, potentially metal-rich planetary body. The GRNS will measure the near-surface abundances for the elements Ni, Fe, Si, K, S, Al, and Ca, as well as the spatial distribution of Psyche's metal-to-silicate fraction (or metal fraction).
View Article and Find Full Text PDFSpace Sci Rev
April 2022
The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs.
View Article and Find Full Text PDFSpace Sci Rev
March 2022
The Psyche mission's Oxidation-Reduction Working Group is focused on understanding, determining, and applying the redox state of (16) Psyche to understand the origin of a metal-rich world. The oxidation-reduction state of an asteroid, along with its temperature, parent body size, and composition, is a key parameter in determining the history of an asteroid. Determining the redox state from spacecraft data is most easily done by examining potential metal-oxide buffer pairs.
View Article and Find Full Text PDFEarth Planets Space
December 2021
The MEGANE instrument onboard the MMX mission will acquire gamma-ray and neutron spectroscopy data of Phobos to determine the elemental composition of the martian moon and provide key constraints on its origin. To produce accurate compositional results, the irregular shape of Phobos and its proximity to Mars must be taken into account during the analysis of MEGANE data. The MEGANE team is adapting the Small Body Mapping Tool (SBMT) to handle gamma-ray and neutron spectroscopy investigations, building on the demonstrated record of success of the SBMT being applied to scientific investigations on other spacecraft missions of irregularly shaped bodies.
View Article and Find Full Text PDFThe presence of hydrogen, most likely in the form of water ice, is well established in Mercury's permanently shaded polar craters. But lower concentrations that may exist away from the poles have not previously been well constrained. In this work we use data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Gamma-Ray and Neutron Spectrometer to produce the first map of the absolute hydrogen abundance in Mercury's northern hemisphere.
View Article and Find Full Text PDFWe present results from a statistical analysis of Mercury's energetic electron (EE) events as observed by the gamma-ray and neutron spectrometer instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The main objective of this study is to investigate possible anisotropic behavior of EE events using multiple data sets from MESSENGER instruments. We study the data from the neutron spectrometer (NS) and the gamma-ray spectrometer anticoincidence shield (ACS) because they use the same type of borated plastic scintillator and, hence, they have very similar response functions, and their large surface areas make them more sensitive to low-intensity EE events than MESSENGER's particle instrumentation.
View Article and Find Full Text PDFThe MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events.
View Article and Find Full Text PDFJ Geophys Res Planets
March 2016
Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near-surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands.
View Article and Find Full Text PDFJ Geophys Res Space Phys
July 2015
We address claim that neutrons from a 4 June 2011 event at Mercury are nonsolarThe claim is based on an erroneous assumption about instrument singles countsThe best interpretation of the neutron event is that the neutrons have a solar origin.
View Article and Find Full Text PDFA reanalysis of NEAR X-ray/gamma-ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near-Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma-ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value, 1100-700+1600 ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls.
View Article and Find Full Text PDFMany ecologists have called for mechanism-based investigations to identify the underlying controls on species distributions. Understanding these controls can be especially useful to construct robust predictions of how a species range may change in response to climate change or the extent to which a non-native species may spread in novel environments. Here, we link spatially intensive observations with mechanistic models to illustrate how physiology determines the upstream extent of the aquatic ectotherm smallmouth bass (Micropterus dolomieu) in two headwater rivers.
View Article and Find Full Text PDFPredicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon.
View Article and Find Full Text PDFDevelopment of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers.
View Article and Find Full Text PDFSurface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites.
View Article and Find Full Text PDFMeasurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury's north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury's radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice.
View Article and Find Full Text PDFUsing Dawn's Gamma Ray and Neutron Detector, we tested models of Vesta's evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation.
View Article and Find Full Text PDFClimate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature.
View Article and Find Full Text PDFBased on a study of high-energy epithermal (HEE) neutrons in data from the Lunar Exploration Neutron Detector (LEND) on NASA's Lunar Reconnaissance Orbiter (LRO), the background from HEE neutrons is larger than initially estimated. Claims by Mitrofanov et al. (Reports, 22 October 2010, p.
View Article and Find Full Text PDFThe MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times.
View Article and Find Full Text PDFThe MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.
View Article and Find Full Text PDFX-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles.
View Article and Find Full Text PDFOrbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.
View Article and Find Full Text PDFAlthough the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract.
View Article and Find Full Text PDFIn January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet.
View Article and Find Full Text PDF