98%
921
2 minutes
20
Background: A risk assessment model for prognostic prediction of colon adenocarcinoma (COAD) was established based on weighted gene co-expression network analysis (WGCNA).
Methods: From the Cancer Genome Atlas (TCGA) database, RNA-seq data and clinical data of COAD patients were retrieved. After screening of differentially expressed genes (DEGs), WGCNA was performed to identify gene modules and screen those associated with COAD progression. Then, via protein-protein interaction (PPI) network construction of module genes, hub genes were obtained, which were then subjected to the least absolute shrinkage and selection operator (LASSO) and Cox regression to build a hub gene-based prognostic scoring model. The receiver operating characteristic curve (ROC curve) was plotted for the optimal cutoff (OCO) of the risk score, based on which, patients were assigned to high or low-risk groups. Areas under the ROC curve (AUCs) were calculated, and model performance was visualized using Kaplan-Meier (KM) survival curves and verified in the external dataset GSE29621. Finally, the model's independent prognostic value was evaluated by univariate and multivariate Cox regression analyses, and a nomogram was built.
Results: Totally 2840 DEGs were screened from COAD dataset of TCGA, including 1401 upregulated ones and 1439 downregulated ones, which were divided into 10 modules by WGCNA. The eigenvalue of the black module was found to have a high correlation with COAD progression. PPI interaction networks were constructed for genes in the black module, and 34 hub genes were obtained by using the MCODE plug-in. A LASSO-Cox regression approach was utilized to analyze the hub genes, and a prognostic risk score model based on the signatures of 9 genes (CHEK1, DEPDC1B, FANCI, MCM10, NCAPG, PARPBP, PLK4, RAD51AP1, and RFC4) was constructed. KM analysis identified shorter overall lower survival in the high-risk group. The model was verified to have favorable predictive ability through training set and validation set. The nomogram, composed of tumor node metastasis (TNM) staging and risk score, was of good predictability.
Conclusions: The COAD prognostic risk model constructed upon the signatures of 9 genes (CHEK1, DEPDC1B, FANCI, MCM10, NCAPG, PARPBP, PLK4, RAD51AP1, and RFC4) can effectively predict the survival status of COAD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983226 | PMC |
http://dx.doi.org/10.1155/2022/8598046 | DOI Listing |
Eur J Gastroenterol Hepatol
September 2025
Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou.
Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Duke University, Durham, NC 27708.
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.
Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.
Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.
Int J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDF