Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many factors can affect the course of heterogeneous nucleation, such as surface chemistry, flexibility and topology, substrate concentration and solubility. Atomic-scale defects are rarely investigated in detail and are often considered to be unimportant surface features. In this work, we set out to investigate the significance of atomic-scale defects in a flexible self-assembled monolayer surface for the behaviour of clusters of Ca and CO ions in water. To this end, we use molecular dynamics simulations to estimate the diffusion coefficients of ion clusters at different topological surface features and obtain ionic radial distribution functions around features of interest. Well-tempered metadynamics is used to gain insight into the free energy of ions around selected surface defects. We find that certain defects, which we refer to as active defects, can impair ionic surface diffusion, as well as affect the diffusion of ions in close proximity to the surface feature in question. Our findings suggest that this effect can result in an ability of such topological features to promote ion clustering and increase local ionic concentration at specific surface sites. The work reported here shows how the presence of small atomic-scale defects can affect the role of a surface in the process of heterogeneous nucleation and contributes towards a rational definition of surfaces as effective nucleating agents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fd00082aDOI Listing

Publication Analysis

Top Keywords

atomic-scale defects
16
surface
9
significance atomic-scale
8
defects flexible
8
heterogeneous nucleation
8
surface features
8
defects
7
flexible surfaces
4
surfaces local
4
local solvent
4

Similar Publications

Ion irradiation has routinely been used to create defects or even pattern two-dimensional (2D) materials. For efficient defect engineering, that is, choosing the proper ion fluence to achieve the desired concentration of defects, it is of paramount importance to know the probability of creating defects as a function of ion energy. Atomistic simulations of ion impacts on 2D targets can provide such information, especially for free-standing systems, but in the case of supported 2D materials, the substrate can strongly affect defect production.

View Article and Find Full Text PDF

Advancing both the fundamental understanding and technological application of two-dimensional semiconducting transition metal dichalcogenides (TMDs) hinges on precise control and identification of atomic-scale defects. Although self-flux growth yields exceptionally pure TMD crystals, the nature of residual defects has remained an open question. Here, we use scanning tunneling microscopy (STM) to directly image and identify point defects in both monolayer and bulk self-flux grown WSe.

View Article and Find Full Text PDF

Axial modulation of Fe sites for boosted electrochemical oxidation.

Nanoscale Horiz

August 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Te

Fe/NC single-atom catalysts have attracted extensive attention due to their maximal atomic utilization and tunable coordination environments. However, the structure-activity relationship of Fe single atoms in electrooxidation remains unclear. Herein, we report a defect engineering strategy to fine-tune the charge configuration of FeN sites by introducing an axial N ligand and constructing FeN-Fe/NC.

View Article and Find Full Text PDF

Hydrogen fuel cell bipolar plates demand surfaces with an atomically smooth morphology and stable electrochemical interfaces to minimize contact resistance and corrosion degradation. While nickel-titanium (NiTi) alloys offer inherent advantages for this role, their practical deployment is hindered by persistent surface defects (e.g.

View Article and Find Full Text PDF

As electronic devices continue to scale down from the current sub-5 nm range, atomic-scale control of defects becomes increasingly crucial to suppressing their impact on the physical properties of the devices. Memristors present an excellent example of a nonlinear and dynamic device with high speed and endurance required for electronic applications ranging from neuromorphic computing to nonvolatile memories. Herein we investigate the impact of atomic defects in sub-2 nm thick MgO/AlO atomic layer stack (ALS) memristors that use an M1 (switching layer)/M2 (oxygen vacancy reservoir layer) bilayer structure grown using atomic layer deposition ().

View Article and Find Full Text PDF