Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER–MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER–MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169640PMC
http://dx.doi.org/10.1073/pnas.2104309119DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
dynamics cellular
8
er–mt system
8
cells
5
role endoplasmic
4
dynamics
4
reticulum dynamics
4
distribution
4
cellular distribution
4
distribution microtubules
4

Similar Publications

Cholesterol biosynthesis is more activated in triple negative breast cancer (TNBC) than in other subtype breast cancer and plays essential role in facilitating TNBC. However, the regulatory network and how cholesterol biosynthesis contribute to TNBC development and progression are not well elucidated. Here, we found that reticulum membrane protein complex 2 (EMC2) is highly expressed in TNBC and predicts short survival of patients.

View Article and Find Full Text PDF

Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.

View Article and Find Full Text PDF

ACE2 Mitigates PEDV-induced Endoplasmic Reticulum Stress and Autophagy by Inhibiting ROS Production.

Microb Pathog

September 2025

Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China, 210095. Electronic address:

Role of ACE2 in regulating inflammatory damage has been recognized, its association with ER stress and autophagy under PEDV infection remains elusive. To clarify the above associations, this study first established a stress injury model through PEDV infection to determine whether it can induce ER stress or autophagy. Then, the relationships between ER stress, autophagy and ROS under PEDV infection were verified.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF