Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three-photon fluorescence microscopic (3PFM) bioimaging is a promising imaging technique for visualizing the brain in its native environment thanks to its advantages of high spatial resolution and large imaging depth. However, developing fluorophores with strong three-photon absorption (3PA) and bright emission that meets the requirements for efficient three-photon fluorescence microscopic (3PFM) bioimaging is still challenging. Herein, four bright fluorophores with aggregation-induced emission features are facilely synthesized, and their powders exhibit high quantum yields of up to 56.4%. The intramolecular engineering of luminogens endows ()-2-(benzo[]thiazol-2-yl)-3-(7-(diphenylamino)-9-ethyl-9-carbazol-2-yl)acrylonitrile (DCBT) molecules with bright near-infrared emission and large 3PA cross sections of up to 1.57 × 10 cm s photon at 1550 nm, which is boosted by 3.6-fold to 5.61 × 10 cm s photon in DCBT dots benefiting from the extensive intermolecular interactions in molecular stacking. DCBT dots are successfully applied for 3PFM imaging of brain vasculature on mice with a removed or intact skull, providing images with high spatial resolution, and even small capillaries can be recognized below the skull. This study will inspire more insights for developing advanced multiphoton absorbing materials for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c00672DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
three-photon absorption
8
three-photon fluorescence
8
fluorescence microscopic
8
microscopic 3pfm
8
3pfm bioimaging
8
high spatial
8
spatial resolution
8
dcbt dots
8
intra- intermolecular
4

Similar Publications

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Understanding how molecular aggregation influences nonlinear optical properties is essential for advancing organic fluorophores in imaging, sensing, and photonic applications. However, the relationship between the molecular aggregation and the magnitude of nonlinear two-photon absorption cross-section remains underexplored. Here, we systematically investigate the aggregation-dependent two-photon absorption properties of the fluorophore TPAPhCN by tuning the degree of aggregation.

View Article and Find Full Text PDF

Strategic Design of Aptamer-Guided Aggregation-Induced Emission Nanoparticles for Targeted Photodynamic Therapy in Breast Cancer.

Adv Sci (Weinh)

September 2025

Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,

Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.

View Article and Find Full Text PDF

Recent Progress In Organic High-Temperature Photothermal Materials.

Chem Asian J

September 2025

School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China.

Organic high-temperature photothermal materials (T > 100 °C) have demonstrated significant application values because of their ability to exceed the temperature limits of traditional organic photothermal materials, enabling spatiotemporally controllable long-distance heating and high-temperature conversion of laser or sunlight. In this review, we summarize the recent progress in organic high-temperature photothermal materials, mainly including organic small molecule and polymer materials. Their photothermal conversion mechanisms and the factors influencing their performance as well as their applications, including photo controlled ignition/deflagration, photothermal induced actuators, photo controlled metal processing, and concentrated sunlight energy conversion were elaborated.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and the accumulation of amyloid-β (Aβ) plaques, with current treatments offering only limited efficacy. Targeted photo-oxygenation of Aβ using small-molecule photosensitizers has emerged as a promising strategy to modulate amyloid aggregation and mitigate associated toxicity. In this work, the rational design and synthesis of donor-engineered, benzimidazole-functionalized aggregation-induced emission (AIE) photosensitizer with optimized photophysical and morphological properties for multimodal theranostic applications in AD is analyzed and reported.

View Article and Find Full Text PDF