Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate among patients with diseases such as atherosclerosis and chronic kidney disease. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete a heterogeneous population of extracellular vesicles (EVs). Recent studies have shown involvement of EVs in the inflammation and oxidative stress observed in VC. We aimed to decipher the role and mechanism of action of macrophage-derived EVs in the propagation of inflammation and oxidative stress on VSMCs during VC. The macrophage murine cell line RAW 264.7 treated with lipopolysaccharide (LPS-EK) was used as a cellular model for inflammatory and oxidative stress. EVs secreted by these macrophages were collected by ultracentrifugation and characterized by transmission electron microscopy, cryo-electron microscopy, nanoparticle tracking analysis, and the analysis of acetylcholinesterase activity, as well as that of CD9 and CD81 protein expression by western blotting. These EVs were added to a murine VSMC cell line (MOVAS-1) under calcifying conditions (4 mM Pi-7 or 14 days) and calcification assessed by the o-cresolphthalein calcium assay. EV protein content was analyzed in a proteomic study and EV cytokine content assessed using an MSD multiplex immunoassay. LPS-EK significantly decreased macrophage EV biogenesis. A 24-h treatment of VSMCs with these EVs induced both inflammatory and oxidative responses. LPS-EK-treated macrophage-derived EVs were enriched for pro-inflammatory cytokines and CAD, PAI-1, and Saa3 proteins, three molecules involved in inflammation, oxidative stress, and VC. Under calcifying conditions, these EVs significantly increase the calcification of VSMCs by increasing osteogenic markers and decreasing contractile marker expression. Our results show that EVs derived from LPS-EK-treated-macrophages are able to induce pro-inflammatory and pro-oxidative responses in surrounding cells, such as VSMCs, thus aggravating the VC process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959646PMC
http://dx.doi.org/10.3389/fcell.2022.823450DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
inflammation oxidative
16
evs
9
extracellular vesicles
8
smooth muscle
8
cells vsmcs
8
macrophage-derived evs
8
inflammatory oxidative
8
calcifying conditions
8
oxidative
6

Similar Publications

Background: Pulmonary neuroendocrine cells (PNECs) are specialized airway epithelial cells with dual sensory and secretory functions. They release bioactive mediators --including neuropeptides such as calcitonin gene-related peptide (CGRP) and gastrin-releasing peptide (GRP), and neurotransmitters such as 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) --that regulate airway smooth-muscle tone, mucus production, and immune responses. In chronic obstructive pulmonary disease (COPD), these PNEC-derived mediators contribute to airway inflammation, remodeling, and smooth-muscle dysfunction.

View Article and Find Full Text PDF

The GPR120 agonist TUG-891 mitigates ischemic brain injury by attenuating endoplasmic reticulum stress and apoptosis via the PI3K/AKT signaling pathway.

Neurotherapeutics

September 2025

Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit

Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.

View Article and Find Full Text PDF

Tralopyril (TP), a representative bromopyrrolonitrile, functions as a broad-spectrum insecticide, raising growing concerns about its potential impact on aquatic organisms and human intestinal health. However, the key targets and toxicity mechanisms underlying TP-induced enteritis remain unclear. In this study, we utilized network toxicology combined with molecular docking to comprehensively explore the potential molecular mechanisms underlying TP-induced enteritis.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Environmental stressor-induced functional and expression dynamics of glutathione S-transferase genes in bees.

Pestic Biochem Physiol

November 2025

College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,

As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.

View Article and Find Full Text PDF