Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Constructing solid-state lithium-oxygen batteries (SSLOBs) holds a great promise to solve the safety and stability bottlenecks faced by lithium-oxygen batteries (LOBs) with volatile and flammable organic liquid electrolytes. However, the realization of high-performance SSLOBs is full of challenges due to the poor ionic conductivity of solid electrolytes, large interfacial resistance, and limited reaction sites of cathodes. Here, a flexible integrated cathode-electrolyte structure (ICES) is designed to enable the tight connection between the cathode and electrolyte through supporting them on a 3D SiO nanofibers (NFs) framework. The intimate cathode-electrolyte structure and the porous SiO NFs scaffold combination are favorable for decreasing interfacial resistance and increasing reaction sites. Moreover, the 3D SiO NFs framework can also behave as an efficient inorganic filler to enhance the ionic conductivity of the solid polymer electrolyte and its ability to inhibit lithium dendrite growth. As a result, the elaborately designed ICES can simultaneously tackle the issues that limit the performance liberation of SSLOBs, making the batteries deliver a high discharge capacity and a long lifetime of 145 cycles with a cycling capacity of 1000 mAh g at 60 °C, much superior to coventional SSLOBs (50 cycles).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202107833DOI Listing

Publication Analysis

Top Keywords

cathode-electrolyte structure
12
lithium-oxygen batteries
12
integrated cathode-electrolyte
8
solid-state lithium-oxygen
8
ionic conductivity
8
conductivity solid
8
interfacial resistance
8
reaction sites
8
nfs framework
8
sio nfs
8

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

High-nickel layered oxide LiNiCoMnO (NCM, ≥ 0.8) materials are considered optimal cathodes for lithium-ion power batteries owing to their high energy density, commendable cycling performance, and cost-effectiveness. However, structural collapse and interface instability during cycling result in diminished cycling stability, significantly hindering their commercial viability.

View Article and Find Full Text PDF

Pre-intercalation has emerged as a highly effective strategy to enhance structural integrity and ion transport kinetics in cathodes for aqueous Zn-ion batteries. Here, we report a zinc-ion pre-intercalated hydrate vanadium oxide cathode, in which the initial insertion of Zn induces a significant expansion of the interplanar spacing, followed by contraction at higher Zn concentrations owing to strong electrostatic interactions with the VO framework. Such competing expansion and contraction of interplanar spacing enhances the overall electrochemical properties.

View Article and Find Full Text PDF

High-nickel LiNiCoMnO (NCM83) cathodes suffer from interfacial instability resulting from cathode-electrolyte reactions and anisotropic mechanical strain within secondary particles. Herein, we present a mechanically adaptive cathode-electrolyte interphase (CEI) engineered via a dynamic covalent network that features a supramolecular ion-conducting polyurethane ureido-pyrimidinone (SPU-UPy) elastomer. The dynamic network integrates cooperative hydrogen bonds and disulfide bonds and imparts exceptional mechanical resilience and autonomous self-healing capabilities that allow it to accommodate volume fluctuations without compromising structural integrity.

View Article and Find Full Text PDF