Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the current research work, pH-sensitive hydrogels were prepared via a free radical polymerization technique for the targeted delivery of 5-aminosalicylic acid to the colon. Various proportions of chitosan, β-Cyclodextrin, and acrylic acid were cross-linked by ethylene glycol dimethacrylate. Ammonium persulfate was employed as an initiator. The development of a new polymeric network and the successful encapsulation of the drug were confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis indicated high thermal stability of the hydrogel compared to pure chitosan and β-Cyclodextrin. A rough and hard surface was revealed by scanning electron microscopy. Similarly, the crystallinity of the chitosan, β-Cyclodextrin, and fabricated hydrogel was evaluated using powder X-ray diffraction. The swelling and drug release studies were performed in both acidic and basic medium (pH 1.2 and 7.4, respectively) at 37 °C. High swelling and drug release was observed at pH 7.4 as compared to pH 1.2. The increased incorporation of chitosan, β-Cyclodextrin, and acrylic acid led to an increase in porosity, swelling, loading, drug release, and gel fraction of the hydrogel, whereas a decrease in sol fraction was observed. Thus, we can conclude from the results that a developed pH-sensitive network of hydrogel could be employed as a promising carrier for targeted drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951511PMC
http://dx.doi.org/10.3390/gels8030155DOI Listing

Publication Analysis

Top Keywords

chitosan β-cyclodextrin
16
drug release
12
ph-sensitive hydrogels
8
targeted drug
8
drug delivery
8
β-cyclodextrin acrylic
8
acrylic acid
8
swelling drug
8
drug
6
designing ph-sensitive
4

Similar Publications

Application of chitosan extracted from silkworm pupae by ultrasound-assisted enzymatic method on strawberry preservation.

Int J Biol Macromol

September 2025

School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China. Electronic address:

As a naturally derived biomacromolecule, chitosan is widely utilized in food preservation. However, the chitosan derived from silkworm pupae and its application in food preservation are relatively unexplored. To obtain chitosan with enhanced preservation properties, silkworm pupae chitosan was extracted using dual-frequency ultrasound-assisted chemical and enzymatic methods, followed by a comparative analysis of their physicochemical properties, biological activity, and preservation efficacy on strawberries.

View Article and Find Full Text PDF

Ferritin is a shell-like carrier protein with an 8 nm diameter cavity that naturally provides a space for encapsulating food and drug components. In the absence of iron atoms bound to this protein, it is called apoferritin, the form used in this study. However, its vulnerability to environmental conditions when used alone warrants further investigation.

View Article and Find Full Text PDF

32 was isolated from traditional Chinese fermented long beans. Plantaricin 32, a novel bacteriocin, was purified from 32 fermentation broth. The molecular weight of plantaricin 32 is 956 Da, and its amino acid sequence is N-Arg-Gly-Pro-Gly-Lys-Thr-Asp-Glu-OH.

View Article and Find Full Text PDF

An Antibacterial and Electroactive Chitosan-Based Dressing with Dual Stimulus-Responsive Drug Delivery for Wound Healing.

Macromol Rapid Commun

September 2025

Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.

Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.

View Article and Find Full Text PDF