Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatoduodenectomy (PD). We previously developed nomogram- and artificial intelligence (AI)-based risk prediction platforms for POPF after PD. This study aims to externally validate these platforms.

Methods: Between January 2007 and December 2016, a total of 1,576 patients who underwent PD in Seoul National University Hospital, Ilsan Paik Hospital, and Boramae Medical Center were retrospectively reviewed. The individual risk scores for POPF were calculated using each platform by Samsung Medical Center. The predictive ability was evaluated using a receiver operating characteristic curve and the area under the curve (AUC). The optimal predictive value was obtained via backward elimination in accordance with the results from the AI development process.

Results: The AUC of the nomogram after external validation was 0.679 (P < 0.001). The values of AUC after backward elimination in the AI model varied from 0.585 to 0.672. A total of 13 risk factors represented the maximal AUC of 0.672 (P < 0.001).

Conclusion: We performed external validation of previously developed platforms for predicting POPF. Further research is needed to investigate other potential risk factors and thereby improve the predictability of the platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914522PMC
http://dx.doi.org/10.4174/astr.2022.102.3.147DOI Listing

Publication Analysis

Top Keywords

external validation
12
risk prediction
8
prediction platforms
8
pancreatic fistula
8
artificial intelligence
8
medical center
8
backward elimination
8
risk factors
8
risk
5
validation risk
4

Similar Publications

Background: In pediatric intensive care units, pain, sedation, delirium, and iatrogenic withdrawal syndrome (IWS) must be managed as interrelated conditions. Although clinical practice guidelines (CPGs) exist, new evidence needs to be incorporated, gaps in recommendations addressed, and recommendations adapted to the European context.

Objective: This protocol describes the development of the first patient- and family-informed European guideline for managing pain, sedation, delirium, and IWS by the European Society of Paediatric and Neonatal Intensive Care.

View Article and Find Full Text PDF

Background: Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when extrapolated to different populations, especially children.

View Article and Find Full Text PDF

Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).

Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.

View Article and Find Full Text PDF

Explainable Machine Learning for Estimating the Contrast Material Arrival Time in Computed Tomography Pulmonary Angiography.

J Thorac Imaging

September 2025

Department of Radiology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.

Purpose: To establish an explainable machine learning (ML) approach using patient-related and noncontrast chest CT-derived features to predict the contrast material arrival time (TARR) in CT pulmonary angiography (CTPA).

Materials And Methods: This retrospective study included consecutive patients referred for CTPA between September 2023 to October 2024. Sixteen clinical and 17 chest CT-derived parameters were used as inputs for the ML approach, which employed recursive feature elimination for feature selection and XGBoost with SHapley Additive exPlanations (SHAP) for explainable modeling.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is a transmembrane protein widely involved in the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs within the human body. Accurate prediction of P-gp inhibitors and substrates is crucial for drug discovery and toxicological assessment. However, existing models rely on limited molecular information, leading to suboptimal model performance for predicting P-gp inhibitors and substrates.

View Article and Find Full Text PDF