Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1-7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping.

Methods: Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM.

Results: Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL.

Conclusions: Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT01519843.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232242PMC
http://dx.doi.org/10.1161/STROKEAHA.121.035494DOI Listing

Publication Analysis

Top Keywords

stroke patients
16
upper limb
16
acute stroke
12
patients
12
internal capsule
12
paretic upper
12
speed/accuracy trade-off
12
thalamus posterior
12
posterior limb
12
limb internal
12

Similar Publications

Background: Acute ischemic stroke (AIS) is characterized by high incidence, sudden onset, and often poor prognosis. Carotid atherosclerosis plays a crucial role in its pathogenesis, and ultrasound imaging offers a non-invasive method for evaluating carotid plaque characteristics. This study aimed to develop and validate a prediction model for AIS risk based on a novel ultrasound-based carotid plaque scoring system combined with clinical risk factors.

View Article and Find Full Text PDF

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF

Objectives: Internationally about 3% of people ≥65 years live in long-term care (LTC) settings. Older people living in nursing homes are more likely to be admitted to hospital. We examined the characteristics and outcomes of stroke patients admitted from LTC nationally and how this changed over the COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Accurate prognostication following cardiac arrest (CA) is crucial for informing clinical decisions. Current guidelines do not recommend a specific time point for recording somatosensory evoked potentials (SSEPs) after CA. We evaluated the ability of ultra-early short- and middle-latency SSEPs to predict good an poor neurological outcome and compared its accuracy with that of other predictors recorded early after CA.

View Article and Find Full Text PDF

Optimization of carotid CT angiography image quality with deep learning image reconstruction with high setting (DLIR-H) algorithm under ultra-low radiation and contrast agent conditions.

Radiography (Lond)

September 2025

Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Jiangsu Provincial Engineering Research Center for Medical Imaging and Digital Medicine, Xuzhou, Jiangs

Introduction: Carotid artery disease is a major cause of stroke and is frequently evaluated using Carotid CT Angiography (CTA). However, the associated radiation exposure and contrast agent use raise concerns, particularly for high-risk patients. Recent advances in Deep Learning Image Reconstruction (DLIR) offer new potential to enhance image quality under low-dose conditions.

View Article and Find Full Text PDF