Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immunotherapy targeting programmed death ligand-1/programmed cell death protein-1 (PD-L1/PD-1) has achieved great success in multiple cancers, but only a small subset of patients showed clinical responses. Recent evidences have shown that post-translational modification of PD-L1 protein could regulate its protein stability and interaction with cognate receptor PD-1, thereby affecting anticancer immunotherapy in several solid tumors. However, the molecular mechanisms underlying how PD-1/PD-L1 expression is regulated still remain unclear in nasopharyngeal carcinoma (NPC). Here, we found N-glycosylation of PD-L1 in NPC cells and tissues. Mechanistically, we showed that STT3A transferred N-linked glycans to PD-L1, and TGF-β1 could positively regulate STT3A expression through activating c-Jun to bind to STT3A promoter. Functional assays showed that inhibition of TGF-β1 resulted in a decrease of glycosylated PD-L1 and enhanced cytotoxic T-cell function against NPC cells. Analysis of clinical specimens revealed that the expression of STT3A was positively correlated with TGF-β1 and c-Jun, and high STT3A expression was positively correlated with a more advanced clinical stage. Altogether, TGF-β1 activated c-Jun/STT3A signaling pathway to promote N-glycosylation of PD-L1, thus further facilitating immune evasion and reducing the efficacy of cancer immunotherapy. As such, all these data suggested that targeting TGF-β1 pathway might be a promising approach to enhance immune checkpoint blockade, and simultaneous blockade of PD-L1 and TGF-β1 pathways might elicit potent and superior antitumor activity relative to monotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930841PMC
http://dx.doi.org/10.3389/fonc.2022.815437DOI Listing

Publication Analysis

Top Keywords

nasopharyngeal carcinoma
8
n-glycosylation pd-l1
8
npc cells
8
pd-l1 tgf-β1
8
stt3a expression
8
positively correlated
8
pd-l1
6
tgf-β1
6
stt3a
5
tgf-β1-mediated pd-l1
4

Similar Publications

The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.

View Article and Find Full Text PDF

Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.

View Article and Find Full Text PDF

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Background: Locally advanced nasopharyngeal carcinoma (LA-NPC) has a heterogeneous prognosis, with approximately one-fourth of patients experiencing poor outcomes. Studies have explored the application of induction chemoimmunotherapy followed by chemoradiotherapy, but its efficacy was controversial.

Methods: The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO, CRD42024619387).

View Article and Find Full Text PDF

Targeted delivery and pro-apoptotic efficacy of an Epstein-Barr virus nuclear antigen 1-specific affibody in EBV-infected cells in vitro.

Int J Biol Macromol

September 2025

Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. Electronic address:

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) sustains viral latency and drives oncogenesis in EBV-driven malignancies such as nasopharyngeal carcinoma and lymphomas. The dimerization of EBNA1 acts as an indispensable molecular switch governing EBV latency and oncogenesis. Disruption of EBNA1 dimerization is a promising strategy, but existing small-molecule inhibitors lack sufficient specificity.

View Article and Find Full Text PDF