Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured "all-surface" Fe-doped cobalt phosphide nanoboxes (Co@CoFe-P NBs) as alternative electrocatalysts for industrial-scale applications. Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P-Co-O-Fe-P configurations with low-valence metal centers (M/M) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P-Co-O-Fe-P configurations into oxygen-bridged, high-valence Co-O-Fe moieties as true active intermediates. In sharp contrast, the formation of such Co-O-Fe moieties in Co-FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. studies of the as-synthesized reference cobalt sulfides (Co-S), Fe doped cobalt selenides (Co@CoFe-Se), and Fe doped cobalt tellurides (Co@CoFe-Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848331PMC
http://dx.doi.org/10.1039/d1ee02249kDOI Listing

Publication Analysis

Top Keywords

water splitting
16
hierarchically nanostructured
8
catalytic mechanisms
8
structural reconstruction
8
active intermediates
8
p-co-o-fe-p configurations
8
evolution reaction
8
co-o-fe moieties
8
doped cobalt
8
cobalt
6

Similar Publications

Predicting binding affinities of liquid crystal monomers: An activity cliffs-driven multidimensional feature fusion model.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.

Liquid crystal monomers (LCMs) have emerged as novel endocrine disrupting chemicals that affect the growth, development, and metabolism of organisms by binding to nuclear hormone receptors (NHRs). However, the studies on the impact of LCMs' molecular features on their binding affinities remain limited. In this study, considering the challenge of activity cliffs in linear quantitative structure-activity relationship modeling, a multidimensional feature fusion model was developed to predict the binding affinities of 1173 LCMs to 15 NHRs.

View Article and Find Full Text PDF

Phase-Reconstruction of S-Doped (NiCo)WC for Efficient and Stable Oxygen Evolution Reaction Electrocatalysis.

Nano Lett

September 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Developing highly active and stable nonprecious electrocatalysts toward sluggish alkaline oxygen evolution reaction (OER) is essential for large-scale green hydrogen production via electrochemical water splitting. Here we report phase and surface co-reconstruction of S-doped (NiCo)WC nanoparticles into (NiCo)C with amorphous electroactive NiCoOOH layer for highly efficient alkaline OER by W dissolution and NiCo surface oxidation. The W dissolution results in the formation of Brønsted base WO ions, which electrostatically accumulate around electrode to promote water dissociation into abundant OH* intermediates, in situ constructing a locally strong alkaline microenvironment to facilitate OH* adsorption on NiCoOOH sites and trigger lattice-oxygen oxidation path.

View Article and Find Full Text PDF

Metal-Organic Framework (MOF)-Based Catalysts for Sustainable Energy Technologies: A Review.

Langmuir

September 2025

Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material, School of Material Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.

The demand for sustainable energy technologies is high due to the depletion and risks linked to fossil fuel usage. Diverse energy technologies, such as regenerative fuel cells, zinc-air batteries, and comprehensive water-splitting devices, possess significant potential for the advancement of green energy. MOFs hold a prominent position among the various kinds of materials utilized in renewable energy technologies.

View Article and Find Full Text PDF

Preparation of cold-stored platelets on-demand: A novel approach to inventory management.

Transfusion

September 2025

Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia.

Background: Cold-stored platelets (CSP) are now being used to treat acute bleeding. However, as CSP are less suitable for prophylaxis, both room temperature (RT) platelets and CSP will be required, which complicates inventory management. The production of CSP "on-demand" from RT platelets may be a desirable option.

View Article and Find Full Text PDF

Constructing robust electrocatalysts and shedding light on the processes of surface reconstruction is crucial for sustained hydrogen production and a deeper understanding of catalytic behavior. Here, a novel ZIF-67-derived lanthanum- and phosphorus-co-doped CoO catalyst (La, P-CoO) has been reported. X-ray absorption spectroscopy (XAS) confirms that the La and P co-doping reduces the coordination number (CN), improves oxygen vacancies (O), and leads to lattice distortion.

View Article and Find Full Text PDF