Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wheat (Triticum aestivum L.) is an important staple food crop for one third of global population and important crop for securing future food security. Rapid changes in the climate on global scale could be a threat for future food security. This situation urges plant breeders to explore the genetic potential of existing wheat germplasm. This study screened forty diverse wheat genotypes for their yield under two different agroclimatic conditions, i.e., Layyah and Dera Ghazi Khan, Pakistan. Data relating to plant height, peduncle length, flag leaf area, spike length, number of spikelets, number of grains per spike, thousand grain weight, chlorophyll content and grain yield were recorded. The tested wheat genotypes significantly differed for grain yield and related traits. Grain yield was positively correlated with plant height, spike length, spike number, flag leaf length, number of grains per spike, and 1000-grain weight. Biplot obtained from the cluster analysis by Euclidean method grouped the studied genotypes in 3 different groups. The genotypes exhibited 10.77% variability within quadrants, whereas 72.36% variability was recorded between quadrants according to clustering. Dendrogram grouped the tested genotypes into two main clusters. The main cluster "I" comprised of 2 genotypes, i.e., 'Seher-2006' and 'AS-2002'. The cluster "II" contained 38 genotypes based on Euclidian values. Genotypes within same cluster had smaller D2 values compared to those belonging to other clusters. The genetic relationships of genotypes provide useful information for breeding programs. Overall, the results revealed that genotypes 'Line 9733', 'Bhakar-2002', 'Line A9' and 'SYN-46' had better yield and yield stability under climatic conditions of southern Punjab. Therefore, these genotypes could be recommended for general cultivation in the study region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932620PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265344PLOS

Publication Analysis

Top Keywords

grain yield
12
genotypes
11
diverse wheat
8
wheat germplasm
8
climatic conditions
8
future food
8
food security
8
wheat genotypes
8
plant height
8
flag leaf
8

Similar Publications

This study evaluated the significance of ten different pollen types-maize, Spanish broom, cattail, marshmallow, malva, sunflower, khejri, pomegranate, ice flower, and bee pollen-in influencing the development, reproduction, and population growth of E. scutalis. The aim was to enhance our understanding of the pollen spectrum acceptable to this predatory mite.

View Article and Find Full Text PDF

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Background: Stored-product insects (Sitophilus spp., Plodia interpunctella, Sitotroga cerealella) drive substantial postharvest losses and increasingly resist synthetic fumigants. Valeriana wallichii roots yield volatile oils rich in short-chain acids and sesquiterpenes.

View Article and Find Full Text PDF