98%
921
2 minutes
20
We report high-valent iron complexes supported by N-heterocyclic carbene (NHC)-anchored, bis-phenolate pincer ligands that undergo ligand-to-metal charge transfer (LMCT) upon photoexcitation. The resulting excited states - with a lifetime in the picosecond range - feature a ligand-based, mixed-valence system and intense intervalence charge transfer bands in the near-infrared region. Upon oxidation of the complex, corresponding intervalence charge transfer absorptions are also observed in the ground state. We suggest that the spectroscopic hallmarks of such LMCT states provide useful tools to decipher excited-state decay mechanisms in high-valent NHC complexes. Our observations further indicate that NHC-anchored, bis-phenolate pincer ligands are not sufficiently strong donors to prevent the population of excited metal-centered states in high-valent iron complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401866 | PMC |
http://dx.doi.org/10.1002/chem.202200269 | DOI Listing |
Chem Commun (Camb)
September 2025
Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.
High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.
View Article and Find Full Text PDFiScience
September 2025
State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDFIEEE Nanotechnol Mater Devices Conf
October 2024
PacTech USA Inc., Santa Clara, CA 95050 USA.
Nanoparticles exhibit optical and infrared sensitivity useful in optoelectronics, spectroscopy, and sensing. Capacitative and conductive coupling induces dipolar and charge transfer plasmon modes in nanoscale dimers. Optical and infrared activity of these hybridized modes are exquisitely sensitive to geometric features of the nanoscale dimer.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Department of Materials Science and Engineering, Westlake University, Hangzhou 310030, PR China.
Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.
View Article and Find Full Text PDF