98%
921
2 minutes
20
Toxification metabolism of the chiral triazole fungicide prothioconazole in the environment has attracted an increasing amount of attention. To better understand the fate of prothioconazole in aquatic ecosystems and develop a treatment strategy, the stereoselective toxicity, degradation and bioconcentration of prothioconazole were investigated in water with algae at the enantiomer level. There was remarkable enantioselectivity against Chlorella pyrenoidosa, and the highly toxic S-prothioconazole was preferentially degraded with enantiomer fraction values ranging from 0.5 to 0.74. Metabolism experiment results showed that the parent compound was quickly eliminated driven by biodegradation and abiotic degradation (hydrolysis, photolysis). Fourteen phase I and two phase II metabolites involved in the reactions of hydroxylation, methylation, dechlorinating, desulfuration, dehydration and conjugation were identified, where prothioconazole-desthio was the major metabolite. The highly toxic metabolite prothioconazole-desthio persisted in water and hardly degraded with or without C. pyrenoidosa. Furthermore, the reaction system including 1 mg of cobalt coated in nitrogen doped carbon nanotubes and 0.156 g of peroxymonosulfate was used to eliminate prothioconazole-desthio. Approximately 96% prothioconazole-desthio was eliminated and transformed to low toxicity metabolites. This work provides a strategy for the risk evaluation of prothioconazole in aquatic ecosystems and proposes a workable plan for the elimination of pesticide residues in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128650 | DOI Listing |
Toxins (Basel)
May 2025
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan.
Several species of crabs from the Xanthidae family are recognized as dangerous marine organisms due to their potent neurotoxins, including paralytic shellfish toxin (PST), tetrodotoxin (TTX), and palytoxin (PLTX). However, the mechanisms of toxin accumulation and transport and the origin of these toxins in toxic xanthid crabs remain unknown. The identification of toxic crab species, their toxicity and toxin composition, and toxin profiles have been studied thus far.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
College of Geography and Environment, Shandong Normal University, Jinan 250000, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong 257092, PR China.
Pentachlorophenol (PCP) is widely distributed in marine environments and poses a threat to the health of marine organisms. Recent studies have demonstrated that PCP induces energy deficiency in marine organisms. However, the underlying toxification mechanism and the resulting adverse outcomes remain unclear.
View Article and Find Full Text PDFToxins (Basel)
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ribbon worms of the closely related species , cf. , and , representing the species complex, possess high concentrations of tetrodotoxin (TTX) and its analogues in all developmental stages from eggs to adults. It has recently been suggested that the eggs and larvae of these animals can be a source of tetrodotoxins (TTXs) for other aquatic organisms.
View Article and Find Full Text PDFGeorgian Med News
October 2024
Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
Introduction: The annual growth of psychiatric and neurodegenerative diseases requires new therapeutic strategies for delivering active pharmaceutical molecules to the brain. Non-invasive intranasal drug delivery is a promising method that allows bypassing of the blood-brain barrier and the liver de-toxification system.
Results: The review discusses the main results of experimental studies of the effect of intranasal substances of amino acid and peptide nature on the monoamine systems of the brain.
Essays Biochem
December 2024
German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Nutritional Toxicology (HG & WM) and Department of Molecular Toxicology (WM), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
Cytosolic sulphotransferase (SULT) enzymes catalyse reactions involved in xenobiotic elimination and hormone regulation. However, SULTs can also generate electrophilic reactive intermediates from certain substrates, including the activation of carcinogens. Here, we review toxicological studies of mouse strains with SULT status altered by genetic modification.
View Article and Find Full Text PDF