Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac reprogramming has become a potentially promising therapy to repair a damaged heart. By introducing multiple transcription factors, including Mef2c, Gata4, Tbx5 (MGT), fibroblasts can be reprogrammed into induced cardiomyocytes (iCMs). These iCMs, when generated in situ in an infarcted heart, integrate electrically and mechanically with the surrounding myocardium, leading to a reduction in scar size and an improvement in heart function. Because of the relatively low reprogramming efficiency, purity, and quality of the iCMs, characterization of iCMs remains a challenge. The currently used methods in this field, including flow cytometry, immunocytochemistry, and qPCR, mainly focus on cardiac-specific gene and protein expression but not on the functional maturation of iCMs. Triggered by action potentials, the opening of voltage-gated calcium channels in cardiomyocytes leads to a rapid influx of calcium into the cell. Therefore, quantifying the rate of calcium influx is a promising method to evaluate cardiomyocyte function. Here, the protocol introduces a method to evaluate iCM function by calcium (Ca) flux. An αMHC-Cre/Rosa26A-Flox-Stop-Flox-GCaMP3 mouse strain was established by crossing Tg(Myh6-cre)1Jmk/J (referred to as Myh6-Cre below) with Gt(ROSA)26Sor/J (referred to as Rosa26A-Flox-Stop-Flox-GCaMP3 below) mice. Neonatal cardiac fibroblasts (NCFs) from P0-P2 neonatal mice were isolated and cultured in vitro, and a polycistronic construction of MGT was introduced to NCFs, which led to their reprogramming to iCMs. Because only successfully reprogrammed iCMs will express GCaMP3 reporter, the functional maturation of iCMs can be visually assessed by Ca flux with fluorescence microscopy. Compared with un-reprogrammed NCFs, NCF-iCMs showed significant calcium transient flux and spontaneous contraction, similar to CMs. This protocol describes in detail the mouse strain establishment, isolation and selection of neonatal mice hearts, NCF isolation, production of retrovirus for cardiac reprogramming, iCM induction, the evaluation of iCM Ca flux using our reporter line, and related statistical analysis and data presentation. It is expected that the methods described here will provide a valuable platform to assess the functional maturation of iCMs for cardiac reprogramming studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167723PMC
http://dx.doi.org/10.3791/62643DOI Listing

Publication Analysis

Top Keywords

cardiac reprogramming
16
functional maturation
12
maturation icms
12
icms
9
calcium flux
8
gcamp3 reporter
8
method evaluate
8
mouse strain
8
neonatal mice
8
cardiac
6

Similar Publications

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF

Dual role of mir-146a in non-small cell lung cancer progression: Molecular mechanisms and clinical potential.

Cell Signal

September 2025

Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Respiratory Immunology research center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. 2.48 million new cases were reported globally in 2022, driven by rising adenocarcinoma rates linked to environmental factors such as air pollution.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Cancer metabolic reprogramming is a fundamental hallmark that enables tumor cells to sustain their malignant behaviors. Beyond its role in supporting growth, invasion, and migration, metabolic rewiring actively contributes to anticancer drug resistance. Cancer cells not only reshape their own metabolism but also engage in aberrant metabolic crosstalk with nonmalignant components within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Macrophage cannibalism: efferocytosis in atherosclerosis.

Curr Opin Lipidol

August 2025

Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.

Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.

Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.

View Article and Find Full Text PDF