98%
921
2 minutes
20
Carbon monoxide (CO) is an endogenous signaling molecule that regulates diverse physiological processes. The therapeutic potential of CO is hampered by its intrinsic toxicity, and its administration poses a significant challenge. Photoactivatable CO-releasing molecules (photoCORMs) are an excellent tool to overcome the side effects of untargeted CO administration and provide precise spatial and temporal control over its release. Here, we studied the CO release mechanism of a small library of derivatives based on 3-hydroxy-2-phenyl-4-benzo[]chromen-4-one (flavonol), previously developed as an efficient photoCORM, by steady-state and femto/nanosecond transient absorption spectroscopies. The main objectives of the work were to explore in detail how to enhance the efficiency of CO photorelease from flavonols, bathochromically shift their absorption bands, control their acid-base properties and solubilities in aqueous solutions, and minimize primary or secondary photochemical side-reactions, such as self-photooxygenation. The best photoCORM performance was achieved by combining substituents, which simultaneously bathochromically shift the chromophore absorption spectrum, enhance the formation of the productive triplet state, and suppress the singlet oxygen production by shortening flavonol triplet-state lifetimes. In addition, the cell toxicity of selected flavonol compounds was analyzed using in vitro hepatic HepG2 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c00032 | DOI Listing |
J Colloid Interface Sci
September 2025
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address:
Carbon monoxide (CO) has demonstrated significant potential in tumor therapy. However, the uncontrolled release of CO and single-modality therapy often fail to achieve the desired therapeutic outcomes. To address the above deficiencies, mesoporous silica nanoparticles containing tetrasulfide bonds (TMSNs) were constructed as intelligent nanocarriers to co-deliver a mitochondria-targeting photosensitizer (Au-TPP) and a photodynamically activated CO-releasing molecule (FeCO), enabling the synergistic combination of photodynamic therapy (PDT) and CO therapy.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Cente
Periodontitis is an infectious disease caused by plaque-associated microorganisms. The condition is characterized by the activation of oxidative stress and immune responses, which contribute to tissue destruction. Carbon monoxide (CO)-based gas therapy, utilizing CO releasing molecules (CORMs), presents a promising therapeutic strategy; however, its efficacy is constrained by the short half-life and limited cellular uptake of CORMs.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.
Carbon monoxide (CO) is a well-established gasotransmitter known for its diverse physiological benefits. However, achieving controlled and targeted CO delivery remains challenging. To address this, light-activated carbon monoxide-releasing molecules (photoCORMs) offer a promising strategy.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Division of Experimental Large Animal Research, Life Science and Laboratory Animal Research Unit, Center for Advanced Science Research and Promotion, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
Carbon monoxide (CO) is generally recognized as a toxic gas; however, it has recently been identified as an endogenous gasotransmitter with significant cytoprotective properties. CO modulates key molecular pathways, including anti-inflammatory, anti-apoptotic, antioxidant, and vasodilatory signaling pathways, by targeting heme- and non-heme-containing proteins. These proteins include soluble guanylate cyclase, cytochrome P450 enzymes, MAPKs, and NLRP3.
View Article and Find Full Text PDFJ Nanobiotechnology
August 2025
Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence, 50134, Italy.
Endothelial tissue regeneration is a major challenge in the context of vascular disorders and tissue repair. One of the most recent and promising therapies for endothelial tissue disorders is the administration of carbon monoxide (CO) by direct injection or release by CO-releasing molecules (CORMs). Despite the great potential of CORMs, light instability and cytotoxicity associated with the heavy metal core are still major drawbacks that inhibit clinical application.
View Article and Find Full Text PDF