Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silver nanoparticles, shaped and stabilized by various means, are known to alter biological systems and promote cytotoxicity. However, the precise mechanism by which they induce toxic outcomes in cancer cells is poorly understood. Using a combination of cellular and biophysical assays and proteomic and metabolomic analyses, we report the cytotoxic mechanism of action of tryptone-stabilized silver nanoparticles (T-AgNPs). After their facile synthesis and characterization using an assortment of spectroscopic techniques and transmission electron microscopy, the mechanism of action of the particles was elucidated using MDA-MB-231 breast cancer cells as the cell model. The nanoparticles inhibited the proliferative (IC:100 ± 3 μg mL) and clonogenic potential of the cells. Flow cytometry analyses revealed an absence of phase-specific cell cycle arrest but extensive cell death in the treated cells. The mechanism of action of the particles consisted of their direct binding to the microtubule-building protein tubulin and the disruption of its helical integrity, as confirmed fluorometric analysis and far-UV spectropolarimetry, respectively. The binding hampered the assembly of microtubules, as confirmed polymer mass analysis of assembled, purified tubulin and immunofluorescence imaging of cellular microtubules. Proteomic and metabolomic analyses revealed the downregulation of lipid metabolism to be a synergistic contributor to cell death. Taken together, we report a novel antiproliferative mechanism of action of T-AgNPs that involves tubulin disruption and the downregulation of lipid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb02760cDOI Listing

Publication Analysis

Top Keywords

mechanism action
16
proteomic metabolomic
12
silver nanoparticles
12
antiproliferative mechanism
8
mda-mb-231 breast
8
cancer cells
8
metabolomic analyses
8
action particles
8
analyses revealed
8
cell death
8

Similar Publications

Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.

Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.

View Article and Find Full Text PDF

Long noncoding RNAs as molecular architects: Shaping plant functions and physiological plasticity.

Mol Plant

September 2025

Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China; MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou 510275, P. R. China. Electronic address:

Long noncoding RNAs (lncRNAs) are emerging as pivotal regulators in gene expression networks, characterized by their structural flexibility and functional versatility. In plants, lncRNAs have gained increasing attention due to accumulating evidence of their roles in modulating developmental plasticity and agronomic traits. In this review, we focus on the origin, classification, and mechanisms of action of plant lncRNAs, with a particular emphasis on their involvement in developmental processes.

View Article and Find Full Text PDF

Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.

View Article and Find Full Text PDF

Modern anesthesia, intensive care, and emergency medicine rely heavily on neuromuscular blocking agents (NMBAs), first introduced in 1942. These agents not only facilitate endotracheal intubation but also improve surgical conditions by suppressing muscle responses to stimuli. NMBAs function via depolarizing (eg, succinylcholine) or non-depolarizing mechanisms.

View Article and Find Full Text PDF

Reduced phenological differences under nitrogen enrichment facilitate invasion by a late-growing plant.

New Phytol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China.

Although invasion success is often attributed to the early phenology of the invader, many late-growing invaders also thrive in resource-enriched environments. However, the mechanism behind this paradox remains poorly understood. Here, we tested how nitrogen (N) enrichment influences competition between the late-growing invader Spartina alterniflora and the early-growing native Phragmites australis in a coastal salt marsh.

View Article and Find Full Text PDF