Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated system) has become the multipurpose tool to manipulate plant genome via their programmable sequence recognition, binding, and cleavage activities. Efficient plant genome modification often requires robust plant transformation. For most plant species, the CRISPR/Cas reagents are delivered into plants as plasmids by Agrobacterium-mediated T-DNA transfer or biolistic approaches. However, these methods are generally inefficient, heavily genotype dependent, and low throughput. Among the alternative plant transformation approaches, the protoplast-based transformation holds the potential to directly deliver DNA, RNA, or protein molecules into plant cells in an efficient and high-throughput manner. Here, we presented a robust and simplified protocol for protoplast-based DNA/ribonucleoprotein (RNP )-mediated genome editing in the model species Nicotiana benthamiana. Using this protocol, we have achieved the gene editing efficiency at 30-60% in protoplasts and 50-80% in regenerated calli and plants. The edited protoplasts can be readily regenerated without selection agents owing to highly efficient DNA or preassembled RNP transformation frequency. Lastly, this protocol utilized an improved culture media regime to overcome the complex media composition used in the previous studies. It offers quick turnaround time and higher throughput to facilitate the development of new genetic engineering technologies and holds the promise to combine with other genetic and genomic tools for fundamental and translational plant research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2164-6_5DOI Listing

Publication Analysis

Top Keywords

genome editing
8
nicotiana benthamiana
8
plant genome
8
plant transformation
8
plant
7
transformation
5
crispr dna-
4
dna- rnp-mediated
4
genome
4
rnp-mediated genome
4

Similar Publications

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

EASY-edit: a toolbox for high-throughput single-step custom genetic editing in bacteria.

Nucleic Acids Res

September 2025

Expression génétique microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.

Targeted gene editing can be achieved using CRISPR-Cas9-assisted recombineering. However, high-efficiency editing requires careful optimization for each locus to be modified, which can be tedious and time-consuming. In this work, we developed a simple, fast and cheap method: Engineered Assembly of SYnthetic operons for targeted editing (EASY-edit) in Escherichia coli.

View Article and Find Full Text PDF

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Emerging Strategies in Corneal Regeneration: The Role of Induced Pluripotent Stem Cell-Based Therapies.

Exp Eye Res

September 2025

Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain; Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain. Electronic address:

Corneal opacity remains a leading cause of global blindness, yet conventional corneal transplantation is constrained by donor scarcity, surgical limitations, and suboptimal long-term outcomes. In response, regenerative strategies are advancing to restore structural and functional integrity across all three corneal layers-epithelium, stroma, and endothelium-through cell-based and bioengineered therapies. Among these, induced pluripotent stem cells (iPSCs) have emerged as a versatile and scalable source capable of generating corneal-like cells under defined, xeno-free conditions.

View Article and Find Full Text PDF

Analog epigenetic memory revealed by targeted chromatin editing.

Cell Genom

September 2025

Department of Mechanical Engineering, MIT, Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA. Electronic address:

Cells store information by means of chromatin modifications that persist through cell divisions and can hold gene expression silenced over generations. However, how these modifications may maintain other gene expression states has remained unclear. This study shows that chromatin modifications can maintain a wide range of gene expression levels over time, thus uncovering analog epigenetic memory.

View Article and Find Full Text PDF