Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Premise: Epiphytes are abundant in ecosystems such as tropical montane cloud forests where low-lying clouds are often in contact with vegetation. Climate projections for these regions include more variability in rainfall and an increase in cloud base heights, which would lead to drier conditions in the soil and atmosphere. While recent studies have examined the effects of drought on epiphytic water relations, the influence that atmospheric moisture has, either alone or in combination with drought, on the health and performance of epiphyte communities remains unclear.

Methods: We conducted a 10-week drought experiment on seven vascular epiphyte species in two shadehouses, one with warmer and drier conditions and another that was cooler and more humid. We measured water relations across control and drought-treatment groups and assessed functional traits of leaves produced during drought conditions to evaluate trait plasticity.

Results: Epiphytes exposed to drought and drier atmospheric conditions had a significant reduction in stomatal conductance and leaf water potential and an increase in leaf dry matter. Nonsucculent epiphytes from the drier shadehouse had the greatest shifts in functional traits, whereas succulent epiphytes released stored leaf water to maintain water status.

Conclusions: Individuals in the drier shadehouse had a substantial reduction in performance, whereas drought-treated individuals that experienced cloud immersion displayed minimal changes in water status. Our results indicate that projected increases in the cloud base height will reduce growth and performance of epiphytic communities and that nonsucculent epiphytes may be particularly vulnerable.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1833DOI Listing

Publication Analysis

Top Keywords

water relations
12
cloud immersion
8
cloud base
8
drier conditions
8
functional traits
8
leaf water
8
nonsucculent epiphytes
8
drier shadehouse
8
water
7
epiphytes
6

Similar Publications

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.

View Article and Find Full Text PDF

Background: Seasonal variation in mortality results from a combination of environmental, biological, and social factors, with ambient temperature recognized as a key contributor. However, comprehensive assessments disentangling temperature effects from other seasonal influences across a broad range of mortality causes remain limited. This study aimed to quantify and compare the mortality burden attributable to ambient temperature and broader seasonal variation across major causes of death in Spain.

View Article and Find Full Text PDF

Objective: To identify barriers and facilitators of infection prevention and control (IPC) practices at King Faisal Hospital (KFH) in Kigali, Rwanda, using the Systems Engineering Initiative for Patient Safety (SEIPS) model.

Design: Qualitative study involving semi-structured interviews.

Setting: King Faisal Hospital, a tertiary healthcare facility in Kigali, Rwanda.

View Article and Find Full Text PDF