98%
921
2 minutes
20
This paper studies the event-triggered sliding mode control problem for singular systems subject to the unknown nonlinear function and the exogenous disturbance. For saving the communication resources, a new adaptive event-triggering communication scheme (AETCS) is designed, which scheme uses the information on the nonlinear function part. Secondly, for the error system, we provide a novel integral sliding surface, which makes it beneficial to construct a new augmented delay system model by utilizing a delay system method. Furthermore, the sliding mode control (SMC) method for the error system is applied to compensate the unknown nonlinearity by using its estimate and match the exogenous disturbance by its upper bound. According to the Lyapunov function theory, stability criteria are got on the basis of LMIs. Moreover, two novel event-triggered adaptive sliding mode controllers based on RBF neural network are designed such that reachability conditions are obtained, and the asymptotic stability of singular systems with the H performance is guaranteed. The RBF neural networks way is exploited to evaluate the unknown nonlinear function, which can eliminate the strict assumption of nonlinear function in some existing results. Finally, the proposed method is validated by two examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2022.02.020 | DOI Listing |
ISA Trans
September 2025
School of Automation, Northwestern Polytechnical University,1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi 710129, PR China. Electronic address:
A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.
View Article and Find Full Text PDFLangmuir
September 2025
ThAMeS Multiphase, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
The evaporation of surfactant-laden sessile droplets has widespread applications in both natural and technological contexts. This study explores the evaporation of droplets containing a nonionic surfactant (tristyrylphenol ethoxylates (EOT)), an anionic surfactant (sodium benzenesulfonate with alkyl chain lengths of C-C (NaDDBS)), and their mixtures at / mole ratios of 0.01, 0.
View Article and Find Full Text PDFUltrasonics
September 2025
Paderborn University, Paderborn, Germany.
This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions-weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions.
View Article and Find Full Text PDFMod Pathol
September 2025
School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. Electronic address:
Deep learning (DL) has significantly improved the diagnostic accuracy and efficiency of cytopathologists. However, current DL-assisted reading modes have yet to be fully evaluated, and there is limited evidence regarding cytopathologists' preferences and experiences. This study employs a randomized, controlled, four-way crossover design to assess the effectiveness of four different reading modes in cervical cytopathology readings.
View Article and Find Full Text PDFISA Trans
August 2025
College of Electrical Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:
In this study, the problem of trajectory tracking optimal control of robotic manipulator system subjected to external load disturbances is investigated, and an observer-based discrete fast terminal sliding mode predictive optimal control (FTSMPC) strategy is presented. Firstly, to address the unknown friction torque and load disturbances, a novel discrete-time extended state observer is designed to estimate the lumped disturbances, in which the boundedness of the observation error can be guaranteed through theoretical analysis. Then, with the outputs of the observer, an FTSMPC control approach is designed.
View Article and Find Full Text PDF