Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteoarthritis (OA) has been recognized as an age-related degenerative disease commonly seen in the elderly that affects the whole "organ" including cartilage, subchondral bone, synovium, and muscles. An increasing number of studies have suggested that the accumulation of senescent cells triggering by various stresses in the local joint contributes to the pathogenesis of age-related diseases including OA. In this review, we mainly focus on the role of the senescent skeletal cells (chondrocytes, osteoblasts, osteoclasts, osteocyte, and muscle cells) in initiating the development and progression of OA alone or through cross-talk with the macrophages/synovial cells. Accordingly, we summarize the current OA-targeted therapies based on the abovementioned theory, e.g., by eliminating senescent skeletal cells and/or inhibiting the senescence-associated secretory phenotype (SASP) that drives senescence. Furthermore, the existing animal models for the study of OA from the perspective of senescence are highlighted to fill the gap between basic research and clinical applications. Overall, in this review, we systematically assess the current understanding of cellular senescence in OA, which in turn might shed light on the stratified OA treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883702PMC
http://dx.doi.org/10.1186/s13075-022-02747-4DOI Listing

Publication Analysis

Top Keywords

senescent skeletal
12
skeletal cells
12
cells
7
senescent
4
cells cross-talk
4
cross-talk synovial
4
synovial cells
4
cells plays
4
plays key
4
key role
4

Similar Publications

Vasoconstrictor responsiveness in resting and contracting skeletal muscle following an acute bout of exercise: Impact of aging.

J Appl Physiol (1985)

September 2025

Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.

Long-term exercise training can attenuate sympathetic vasoconstriction in both resting and contracting skeletal muscle; however, the impact of an acute bout of exercise on vasoconstrictor responsiveness and the influence of aging is unknown. Therefore, we tested the hypothesis that an acute bout of exercise will blunt sympathetic-mediated vasoconstriction in resting and contracting skeletal muscle of young and older adults. Twenty-one adults (10 Young: 23±5 yr and 11 Older: 65±8 yr) performed a rest and a rhythmic handgrip exercise trial before and after either 30 minutes of cycling exercise (60-65% HRmax) or a time control period (seated rest).

View Article and Find Full Text PDF

Dietary intake has an important influence on rates of fuel use during exercise, but the extent to which short-term diet changes affect peak fat oxidation (PFO) and the intensity at which this occurs (Fat) is unknown. This study examined the impact of diet-induced changes in substrate availability on PFO and Fat and the expression of key lipid-regulatory genes and proteins in skeletal muscle. Forty moderately to well-trained males (27 ± 5 years, V̇O 56.

View Article and Find Full Text PDF

The goal of this paper is to estimate an optimal combination of biomarkers for individuals with Duchenne muscular dystrophy (DMD), which provides the most sensitive combinations of biomarkers to assess disease progression (in this case, optimal with respect to standardized response mean (SRM) for 4 muscle biomarkers). The biomarker data is incomplete (missing and irregular) multivariate longitudinal data. We propose a normal model with structured covariance designed for our setting.

View Article and Find Full Text PDF

Maintenance of organismal function requires tightly regulated biomolecular communication. However, with aging, communication deteriorates, thereby disrupting effective information flow. Using information theory applied to skeletal muscle single cell RNA-seq data from young, middle-aged, and aged animals, we quantified the loss of communication efficiency over time.

View Article and Find Full Text PDF

Clinical, Immunological, and Vesicular Markers in Sarcopenia and Presarcopenia.

Front Biosci (Landmark Ed)

August 2025

Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.

Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.

Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.

View Article and Find Full Text PDF