Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electrocatalytic NO reduction is a promising technology for ambient NO removal with simultaneous production of highly value-added NH. Herein, we report that honeycomb carbon nanofiber coated on carbon paper acts as an efficient metal-free catalyst for ambient electroreduction of NO to NH. In 0.2 M NaSO solution, such catalyst achieves an NH yield of 22.35 μmol h cm with a high Faradaic efficiency of up to 88.33%. Impressively, it also shows excellent stability for 10-h continuous electrolysis. Theoretical calculations reveal that the most active center of functional groups is -OH group for NO reduction with a low energy barrier (ΔG of 0.29 eV) for the potential-determining step (*NO + H → *HNO).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.02.074 | DOI Listing |