98%
921
2 minutes
20
Objectives: Precision oncology is generating vast amounts of multiomic data to improve human health and accelerate research. Existing clinical study designs and attendant data are unable to provide comparative evidence for economic evaluations. This lack of evidence can cause inconsistent and inappropriate reimbursement. Our study defines a core data set to facilitate economic evaluations of precision oncology.
Methods: We conducted a literature review of economic evaluations of next-generation sequencing technologies, a common application of precision oncology, published between 2005 and 2018 and indexed in PubMed (MEDLINE). Based on this review, we developed a preliminary core data set for informal expert feedback. We then used a modified-Delphi approach with individuals involved in implementation and evaluation of precision medicine, including 2 survey rounds followed by a final voting conference to refine the data set.
Results: Two authors determined that variation in published data elements was reached after abstraction of 20 economic evaluations. Expert consultation refined the data set to 83 unique data elements, and a multidisciplinary sample of 46 experts participated in the modified-Delphi process. A total of 68 elements (81%) were selected as required, spanning demographics and clinical characteristics, genomic data, cancer treatment, health and quality of life outcomes, and resource use.
Conclusions: Cost-effectiveness analyses will fail to reflect the real-world impacts of precision oncology without data to accurately characterize patient care trajectories and outcomes. Data collection in accordance with the proposed core data set will promote standardization and enable the generation of decision-grade evidence to inform reimbursement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jval.2022.01.005 | DOI Listing |
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFMycologia
September 2025
Herbarium, University of Michigan, 3600 Varsity Drive, Ann Arbor, Michigan 48108, USA.
Marthamycetales species are widely distributed, non-lichenized, apothecial ascomycetes that are associated with various woody plants and grasses. Most species are presumed to be saprobes, although a few are pathogens. Apothecia are small and erumpent, with farinose discs that are encircled by ragged, projecting flaps of degraded plant tissue.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFAust J Rural Health
October 2025
AgHealth Australia, School of Rural Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
Objective: To describe the pattern and estimated direct economic burdens associated with unintentional deaths and injuries on Australian farms over the past 11 years (2013-2023).
Design: Descriptive retrospective epidemiological study of National Coronial Information System (NCIS) data for persons fatally injured on a farm and workers' compensation injuries data from the National Data Set.
Setting: Australia.