98%
921
2 minutes
20
Large magnitude earthquakes produce complex surface deformations, which are typically mapped by field geologists within the months following the mainshock. We present detailed maps of the surface deformation pattern produced by the M. Vettore Fault System during the October 2016 earthquakes in central Italy, derived from ALOS-2 SAR data, via DInSAR technique. On these maps, we trace a set of cross-sections to analyse the coseismic vertical displacement, essential to identify both surface fault ruptures and off-fault deformations. At a local scale, we identify a large number of surface ruptures, in agreement with those observed in the field. At a larger scale, the inferred coseismic deformation shows a typical long-wavelength convex curvature of the subsiding block, not directly recognizable in the field. The detection of deformation patterns from DInSAR technique can furnish important constraints on the activated fault segments, their spatial distribution and interaction soon after the seismic events. Thanks to the large availability of satellite SAR acquisitions, the proposed methodological approach can be potentially applied to worldwide earthquakes (according to the environmental characteristics of the sensed scene) to provide a wider and faster picture of surface ruptures. Thus, the derived information can be crucial for emergency management by civil protection and helpful to drive and support the geological field surveys during an ongoing seismic crisis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873333 | PMC |
http://dx.doi.org/10.1038/s41598-022-07068-9 | DOI Listing |
Int J Biol Macromol
September 2025
College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China. Electronic address:
In this study, a novel bleaching method for ramie cellulose fibers with low oxidative damage was developed by utilizing the properties of sodium percarbonate contained in tea saponin, which slowly releases hydrogen peroxide in the catalytic oxidation system of N-hydroxyphthalimide (NHPI). First, the bleaching process was optimized using response surface design, followed by comparison and characterization of fiber properties prepared under different bleaching systems. Finally, the energy consumption, water consumption, and toxicity of the NHPI/tea saponin system were evaluated.
View Article and Find Full Text PDFAtomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.
View Article and Find Full Text PDFActa Neurochir (Wien)
September 2025
Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
Background: Identifying haemodynamic factors associated with thin-walled regions (TWRs) of intracranial aneurysms is critical for improving pre-surgical rupture risk assessment. Intraoperatively, these regions are visually distinguished by a red, translucent appearance and are considered highly rupture prone. However, current imaging modalities lack the resolution to detect such vulnerable areas preoperatively.
View Article and Find Full Text PDFPLoS One
September 2025
School of Geological Engineering, Institute of Disaster Prevention, Langfang 065201, China.
Bedrock fault dislocations significantly influence the rupture instability of rock and soil slopes adjacent to fault zones. Understanding the dynamic processes, kinematic characteristics, and genesis mechanisms of landslides induced by strong seismic fault dislocations is crucial for advancing the theoretical framework of landslide studies. This paper presents a representative experiment simulating the emergence of seismic faults (internal rupture belts within the soil mass) at the shoulders and toes of slopes due to bedrock fault dislocations.
View Article and Find Full Text PDFInt J Gynaecol Obstet
September 2025
Stanford Women's Cancer Center, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA.
In 2014, FIGO's Committee for Gynecologic Oncology revised the staging of ovarian cancer, incorporating ovarian, fallopian tube, and peritoneal cancer into the same system. Most of these malignancies are high-grade serous carcinomas (HGSCs). Stage IC is now divided into three categories: IC1 (surgical spill), IC2 (capsule ruptured before surgery or tumor on ovarian or fallopian tube surface), and IC3 (malignant cells in the ascites or peritoneal washings).
View Article and Find Full Text PDF