98%
921
2 minutes
20
Conducting polymer has been directly polymerized around living neural cells or in the cortex with the aim of creating an intimate contact between implantable electrical devices and electrogenetic cells. The long term cellular effect after conductive polymer coating, a critical issue for practical applications, has not been reported. In this study, poly(3,4-ethylenedioxythiophene) PEDOT was directly polymerized around the living primary neural and PC12 cells under varying current densities, potentials and charge-balanced current pulses. The cell morphology, nuclei evolution, and cell viability post PEDOT polymerization were studied at different time points. The aim of this study was to investigate the immediate and long-term cellular response towards in-situ polymerization of conductive polymers and to provide experimental information on the feasibility of this technique in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112410 | DOI Listing |
Front Sports Act Living
August 2025
Faculty of Physical Education, China West Normal University, Nanchong, China.
Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.
Adv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDFCureus
September 2025
Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, USA.
The spinal cord is an organ capable of sending and receiving a lot of biological and electrical information. It is not just a sending and receiving channel, but a living structure capable of autonomously processing the afferent and efferent notifications with which it comes into contact. The osteopathic neurological model includes the concept of facilitation of the spinal segment, that is, a reflex arc that is established in a spinal segment between two visceral and/or somatic structures, creating a loop of chronicity.
View Article and Find Full Text PDFAnat Sci Educ
September 2025
Human Anatomy, Vita-Salute San Raffaele University, Milan, Italy.
As emerging technologies reshape both the body and how we represent it, anatomical education stands at a threshold. Virtual dissection tools, AI-generated images, and immersive platforms are redefining how students learn anatomy, while real-world bodies are becoming hybridized through implants, neural interfaces, and bioengineered components. This Viewpoint explores what it means to teach human anatomy when the body is no longer entirely natural, and the image is no longer entirely real.
View Article and Find Full Text PDF