Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contrast-enhanced ultrasound (CEUS) is a widely used diagnostic tool for analyzing perfusion and characterizing lesions in several organs. However, to date, it has not been sufficiently investigated whether there is an association between CEUS findings and kidney function. This study aimed at identifying the potential relationship between kidney function and the renal perfusion status determined by CEUS in living kidney donors. A total of 30 living kidney donors examined between April 2018 and March 2020 were included in the study. All patients underwent various diagnostic procedures for evaluation of renal function. CEUS was performed in all 30 donors one day before nephrectomy. Kidney perfusion was quantified using a postprocessing tool (VueBox, Bracco Imaging). Various perfusion parameters were subsequently analyzed and compared with the results of the other methods used to evaluate kidney function. Of all parameters, mean signal intensity (MeanLin) had the strongest correlation, showing significant correlations with eGFR (CG) (r = -0.345; = 0.007) and total kidney volume (r = -0.409; = 0.001). While there was no significant correlation between any perfusion parameter and diethylenetriaminepentaacetic acid (DTPA), we detected a significant correlation between MeanLin and DTPA (r = -0.502; = 0.005) in the subgroup of normal-weight donors. The results indicate that signal intensity in CEUS is associated with kidney function in normal-weight individuals. Body mass index (BMI) may be a potential confounder of signal intensity in CEUS. Thus, more research is needed to confirm these results in larger study populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836871PMC
http://dx.doi.org/10.3390/jcm11030791DOI Listing

Publication Analysis

Top Keywords

kidney function
16
living kidney
12
kidney donors
12
signal intensity
12
kidney
10
kidney perfusion
8
contrast-enhanced ultrasound
8
ultrasound ceus
8
renal function
8
intensity ceus
8

Similar Publications

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.

View Article and Find Full Text PDF

This study aimed to develop a predictive model and construct a graded nomogram to estimate the risk of severe acute kidney injury (AKI) in patients without preexisting kidney dysfunction undergoing liver transplantation (LT). Patients undergoing LT between January 2022 and June 2023 were prospectively screened. Severe AKI was defined as Kidney Disease: Improving Global Outcomes stage 3.

View Article and Find Full Text PDF

The renal baroreflex describes the dose-dependent relation between renal pressure and renin release. Former studies have approximated this relation through animal experiments, but the exact shape of the response curve and its alteration by hypertension remain unclear. Therefore, we conducted a systematic review and meta-analysis on the renal baroreflex in healthy and hypertensive animals.

View Article and Find Full Text PDF

Lithium-induced kidney injury is commonly associated with the development of nephrogenic diabetes insipidus. Longer term lithium exposure is associated with the development of chronic interstitial fibrosis. The mechanisms of lithium-induced kidney injury are multifaceted, affecting many intracellular cell signaling pathways associated with cell cycle regulation, cell proliferation, and subsequent increased extracellular matrix formation and interstitial fibrosis.

View Article and Find Full Text PDF