Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics.

Aim: Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines.

Methods: Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies.

Results: 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract.

Conclusions: Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843028PMC
http://dx.doi.org/10.1186/s12906-022-03513-4DOI Listing

Publication Analysis

Top Keywords

neem seed
24
unripe ripe
20
seed extracts
20
ripe seed
20
breast cancer
16
anticancer activity
16
antibiofilm anticancer
12
cancer cell
12
activity ripe
12
seed extract
12

Similar Publications

The limited water solubility and environmental instability of natural pesticidal compounds impede their broader agricultural use. This study reports an amphiphile-assisted nanoprecipitation method to imbibe azadirachtin-rich neem seed extract (NSE) within a glycine carrier matrix, yielding a stable nanocomposite biopesticide. The formulation, prepared using polyoxyethylene sorbitan monooleate as a stabilizer and glycine as the matrix former, followed by lyophilization, exhibited a hydrodynamic diameter of ∼8 nm when redispersed in water.

View Article and Find Full Text PDF

Neem (): A Miracle Herb; Panacea for All Ailments.

Food Sci Nutr

September 2025

Department of Food Science and Postharvest Technology Jimma University College of Agriculture and Veterinary Medicine, Jimma University Jimma Ethiopia.

The neem tree (), native to the Indian subcontinent, has recently gained global recognition because of its extensive therapeutic qualities. It contains a high concentration of antioxidants and other valuable active substances including azadirachtin, salannin, nimbidin, nimbolinin, nimbidol, nimbin, and quercetin, which are extracted from various plant parts. It has been widely utilized in Ayurveda, Unani, and Homeopathic treatments and has gained significant attention in modern medicine.

View Article and Find Full Text PDF

Botanical insecticides derived from neem ( A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact.

View Article and Find Full Text PDF

Investigation of neem-oil-loaded PVA/chitosan biocomposite film for hydrophobic dressing, rapid hemostasis and wound healing applications.

Int J Biol Macromol

June 2025

Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh. Electronic address:

The present work aims to develop a hydrophobic dressing with a blood-repellent surface that achieves fast clotting without blood loss, having antibacterial properties, clot self-detachment, and superior wound healing activity. For these reasons, a novel approach was applied by producing a hydrophobic film made of PVA, chitosan, and neem seed oil (NSO). The film had the necessary hydrophobicity, mechanical strength, stability and was able to transmit water vapor to be suitable for the wound skin surface and demonstrated faster blood clotting (BCI = 91.

View Article and Find Full Text PDF